

## Leaning Against the Wind: An Empirical Cost-Benefit Analysis

Financial Stability Considerations for Monetary Policy

FRBNY September 30, 2022

Luis Brandao-Marques, Gaston Gelos, Machiko Narita, and Erlend Nier

#### **Disclaimer**

• The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

### **Should countries lean against the wind? How?**

# When facing loosening of financial conditions, how do macroprudential-, monetary-, FX-, and CFM policies compare?

### (i) Macropru vs. monetary policy

- Macroprudential better targeted, allows monetary policy to focus on inflation, output.
- Monetary policy "gets in all the cracks" (Stein 2013).
- Evidence so far does not favor LATW by monetary policy to reduce crisis probability (IMF 2015, Svensson 2016).
- Existing studies on monetary leaning against the wind focus on the tail risk of crises.

#### Should countries lean against the wind? How?

#### (ii) External shocks

- Exchange rate not always sufficient shock absorber (Rey 2013, Obstfeld 2015, Arregui and others 2018)
- In practice, countries use a range of policy tools to deal with changing external financial conditions.
- So far, no systematic empirical comparison of policies

### New approach

### • Two steps

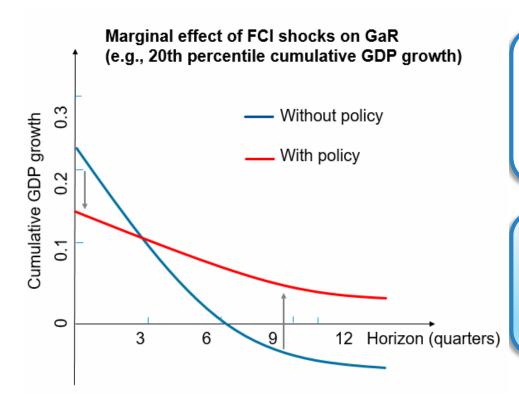
- Quantile regressions to estimate policy effects on the entire distributions of future growth and inflation
  - Build on the Growth-at-Risk approach (e.g., Adrian et al. 2018, 2019)
- Loss functions to evaluate the net benefit of each policy

### Key advantages

- Go beyond **tail risks** or crises
- Capture **all channels** at work in the data

### **Our main findings**

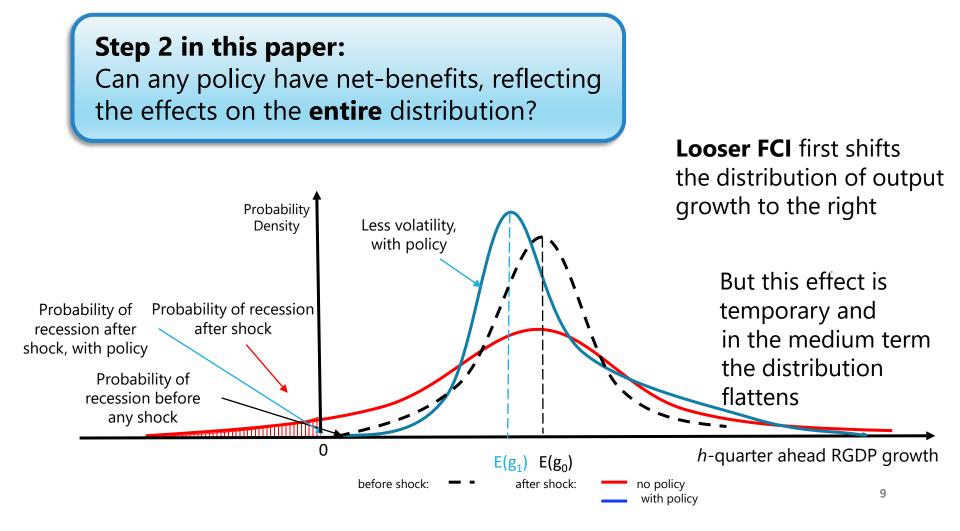
Leaning against loose financial conditions is...


- Beneficial with macroprudential policy
- Not beneficial with monetary policy
- Only small net benefits with **CFMs** and **FXIs**

# **Empirical Approach**

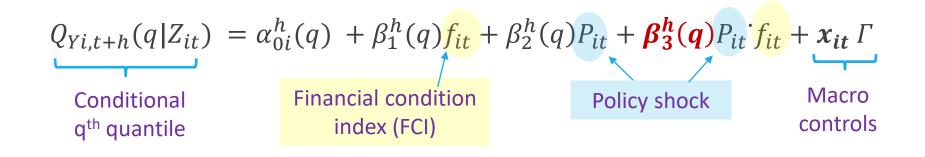
- Going beyond Growth-at-Risk –

### Starting point: the Growth-at-Risk approach


- Growth-at-risk (GaR) framework forecasts the conditional distribution of GDP growth (e.g., Adrian et al. 2018, 2019)
- **GaR** is growth at a low percentile



Loose financial conditions today increase downside risks to GDP tomorrow


**Step 1 in this paper:** Can any policy can reduce the **downside** risks?

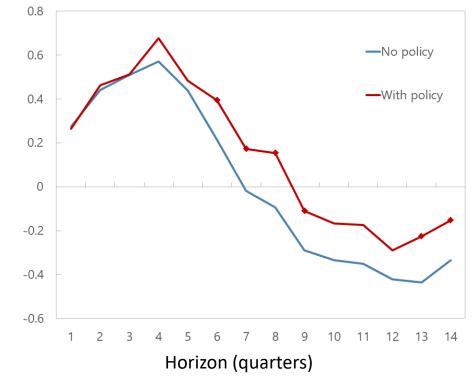
### Going beyond Growth-at-Risk



# Step 1. Quantile regressions

### Step 1: Quantile regressions




- **Regress future GDP growth** on current economic and domestic financial conditions (Adrian, Boyarchenko, and Giannone, 2019)
- Interested in  $\beta_3^h(q)$  interaction term of f with policy variable P
  - for  $q = 5^{\text{th}}$ , ...  $95^{\text{th}}$  quantiles and h = 1, ..., H quarters
  - Sample of 37 countries (AE and EME), 1990Q1-2016Q4
  - Domestic financial condition index (IMF, 2018)
- Do the same estimation for future inflation

### Use policy shocks to address endogeneity

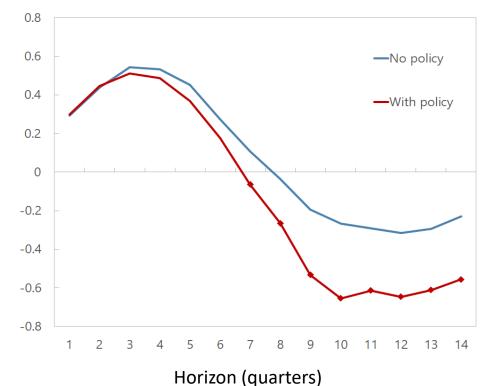
- Policy actions are endogenous
- Extract **unexpected variation** in policy variables
  - Estimate **policy response functions**
  - Compute policy shocks as residuals
  - Ordered probit for Macroprudential policy and CFMs
  - OLS for Monetary policy and FX interventions

## Macroprudential tightening reduces downside risks

- Responses of the Growth-at-Risk to a FCI loosening
  - No policy:  $\beta_1^h(q)$
  - With policy:  $\beta_1^h(q) + \beta_3^h(q)\sigma^P$
- Tightening MaPP mitigate downside risks in the medium term
- Short-run effects are not significant



Notes: 10<sup>th</sup> percentile of the distribution of detrended RGDP growth.


 $\sigma^P$ : Standard deviation of P

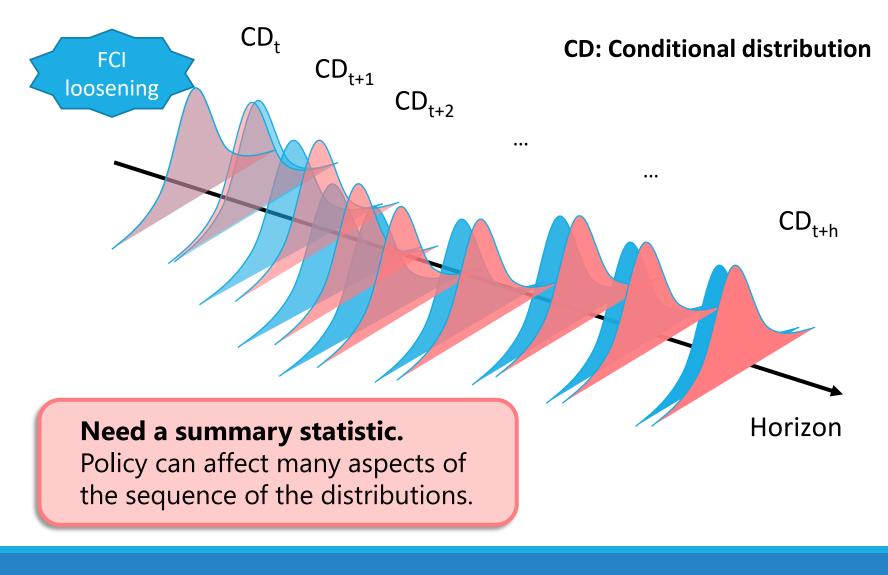
# However, monetary policy tightening rather increases downside risks

- Responses of the Growth-at-Risk to a FCI loosening
  - No policy:  $\beta_1^h(q)$
  - With policy:  $\beta_1^h(q) + \beta_3^h(q)\sigma^P$

 "Leaning against the wind" appears counterproductive in addressing tail risks

• In line with Svensson (2017)




Notes: 10<sup>th</sup> percentile of the distribution of detrended RGDP growth.

 $\sigma^{\it P}$  : Standard deviation of  ${\it P}$ 

# Step 2. Analysis using loss functions

Can any policy have net-benefits, reflecting the effects on the *entire* distribution?

# How can we compare the effects on the *entire* distribution over horizons?



### Use a loss functions in evaluating net-benefits

$$L(\boldsymbol{\Theta}, \boldsymbol{P}) = \sum_{h=0}^{H} \boldsymbol{\beta}^{h} \, \widehat{E_{t}}[l_{t+h} | \boldsymbol{\Theta}, \boldsymbol{P}]$$

where

$$l_{t+h} = \omega_y (y_{t+h} - \overline{y_t})^2 + \omega_\pi \pi_{t+h}^2$$

- Quadratic loss function (baseline) for macro stabilization
- $\omega_v$  and  $\omega_\pi$  weights on **output** and **price** stability

**Compare losses** for each policy *P*:  $L(\Theta, P = 0)$  vs.  $L(\Theta, P = \sigma^{P})$ 

#### **Calculate Benefits/Losses associated with each Policy**

To estimate moments, fit skewed-Normal distribution using 19 quantiles and minimize distance between EQF and theoretical quantile function (TQF)

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \sum_{q=1}^{19} \left( EQF_i(\overline{x}) - SkewTQF(\theta) \right)^2$$

### Macroprudential policy tightening reduces losses, but monetary policy tightening increases losses

|                    | Domestic Shock                         |                                      |                        |  |  |
|--------------------|----------------------------------------|--------------------------------------|------------------------|--|--|
|                    | ω <sub>y</sub> =1, ω <sub>p</sub> =0 ω | 0 -1 0 -1                            | ω <sub>y</sub> =0.542, |  |  |
|                    |                                        | ω <sub>γ</sub> =1, ω <sub>p</sub> =1 | ω <sub>p</sub> =1      |  |  |
| MPM All            | -0.089 ***                             | -0.085 ***                           | -0.083 ***             |  |  |
| MPM Borrower-Based | -0.100 ***                             | -0.068 ***                           | -0.065 ***             |  |  |
| MPM FI-Based       | -0.053 **                              | -0.036 **                            | -0.035 **              |  |  |
| MP                 | 0.121 ***                              | 0.115 ***                            | 0.111 ***              |  |  |
| FXI                | -                                      | -                                    | -                      |  |  |
| CFM                | -                                      | -                                    | -                      |  |  |

Notes: Changes in losses by tightening *P*, in percent of losses without policy ( $L_o(\Theta, P = 0)$ ). Confidence bands in brackets. Inference based on cluster bootstrap. \*, \*\*, \*\*\* means significance at 10, 5, 1 percent levels.

### Consider a loosening in global financial conditions

$$Q_{Yi,t+h}(q|Z_{it}) = \alpha_{0i}^{h}(q) + \beta_{1}^{h}(q)f_{it}$$
  
Domestic FCI  
$$+\beta_{2}^{h}(q)g_{t} + \beta_{3}^{h}(q)P_{it} + \beta_{4}^{h}(q)P_{it} \cdot g_{t} + x_{it} \Gamma$$
  
Global FCI

- Modify quantile regressions to examine global FCI (g) and proceed the loss function analysis for non-US sample
- U.S. FCI is used as a **global FCI**, which is exogenous for other countries
- Include analysis of effects of CFMs (capital controls) and FX Intervention

### Macroprudential policy tightening reduces losses, but other policies do not

|                    | Global FCI                           |                                      |                        |  |  |  |
|--------------------|--------------------------------------|--------------------------------------|------------------------|--|--|--|
|                    | $\omega_{\gamma}=0.542,$             |                                      | ω <sub>γ</sub> =0.542, |  |  |  |
|                    | ω <sub>γ</sub> =1, ω <sub>p</sub> =0 | ω <sub>γ</sub> =1, ω <sub>p</sub> =1 | $\omega_p$ =1          |  |  |  |
| MPM All            | -0.112 ***                           | * -0.107 ***                         | -0.104 ***             |  |  |  |
| MPM Borrower-Based | -0.107 ***                           | * -0.101 ***                         | -0.096 ***             |  |  |  |
| MPM FI-Based       | -0.068 ***                           | * -0.067 ***                         | -0.065 ***             |  |  |  |
| MP                 | 0.038 *                              | 0.036 *                              | 0.036 *                |  |  |  |
| FXI                | -0.022                               | -0.021                               | -0.021                 |  |  |  |
| CFM                | -0.039                               | -0.034                               | -0.030                 |  |  |  |

Notes: Changes in losses by tightening *P*, in percent of losses without policy ( $L_o(\Theta, P = 0)$ ). Confidence bands in brackets. Inference based on cluster bootstrap. \*, \*\*, \*\*\* means significance at 10, 5, 1 percent levels.

#### **Effects may Depend on Vulnerabilities**

- Effect of a loosening of financial conditions may be amplified when financial sector leverage is high
- Or: tightening policies may help when leverage is low (build resilience), but not when leverage is already high
- Augment quantile regressions:

 $Q_{\Delta y_{i,t,t+h}}(q|Z_{it}) = \alpha_{0i}^{h}(q) + \beta_{1}^{h}(q)\Delta y_{it} + \beta_{2}^{h}(q)f_{it} + \beta_{3}^{h}(q)P_{it} + \beta_{4}^{h}(q)P_{it} \times f_{it}$  $+ (\beta_{6}^{h} + \beta_{7}^{h}(q)f_{it} + \beta_{8}^{h}(q)P_{it} + \beta_{9}^{h}(q)P_{it} \times f_{it}) \times CGDP_{it},$ h = 1, ..., H, q = 0.05, ..., 0.95

#### **Effects do Depend on Vulnerabilities**

Tightening borrower-based macropru→ stronger loss reduction if credit is high. Tightening financial-institutions-based macropru → larger benefits when credit is still low; does not have significant effects when credit is already high.

|                    | Low Credit                           |                                      |                                                                | High Credit                          |                                      |                        |
|--------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------|--------------------------------------|--------------------------------------|------------------------|
|                    |                                      | ω −1 ω −1                            | ω <sub>γ</sub> =0.542,<br>ω <sub>ρ</sub> =1 ω <sub>γ</sub> =1, | ω −1 ω −0                            | ω <sub>γ</sub> =1, ω <sub>p</sub> =1 | ω <sub>y</sub> =0.542, |
|                    | ω <sub>γ</sub> =1, ω <sub>p</sub> =0 | ω <sub>γ</sub> =1, ω <sub>p</sub> =1 |                                                                | ω <sub>γ</sub> =1, ω <sub>p</sub> =0 |                                      | ω <sub>p</sub> =1      |
| MPM All            | -0.089 **                            | -0.086 **                            | -0.084 **                                                      | -0.099 **                            | -0.094 **                            | -0.090 **              |
| MPM Borrower-Based | -0.033                               | -0.032                               | -0.031                                                         | -0.083 ***                           | -0.078 ***                           | -0.075 ***             |
| MPM FI-Based       | -0.076 **                            | -0.072 **                            | -0.070 **                                                      | -0.028                               | -0.027                               | -0.026                 |
| MP                 | 0.137 ***                            | 0.132 ***                            | 0.129 ***                                                      | 0.126 ***                            | 0.120 ***                            | 0.115 ***              |

### Results are robust to alternative setups

- Alternative loss functions
  - Linear-quadratic loss function to address level effects
  - Linex loss function to consider asymmetric preferences
- Alternative monetary policy shocks (Appendix 2)
  - **High-frequency identification** around policy announcements
- Advanced economies vs. emerging market economies

# Summary

### How should countries lean against the wind?

- New empirical approach, going beyond tail risks
  - Estimate policy effects on the entire future distributions with quantile regressions
  - Evaluate the net benefit of each policy with **loss functions**
- **Results** suggest leaning against loose financial conditions is...
  - **Beneficial** with macroprudential policy
  - Not beneficial with monetary policy
  - Only small net benefits with CFMs and FXIs

# Thank you!

### Appendix 1: Robustness to Alternative Loss Functions. MPMs reduce losses, but not other policies.

|                    | External Shock                       |                                      |            |  |  |
|--------------------|--------------------------------------|--------------------------------------|------------|--|--|
|                    | Linear-qua                           | Asymmetric                           |            |  |  |
|                    | ω <sub>γ</sub> =1, ω <sub>p</sub> =0 | ω <sub>γ</sub> =1, ω <sub>p</sub> =0 |            |  |  |
| MPM All            | -0.100 ***                           | -0.095 ***                           | -0.109 *** |  |  |
| MPM Borrower-Based | -0.097 ***                           | -0.089 ***                           | -0.100 *** |  |  |
| MPM FI-Based       | -0.060 **                            | -0.058 **                            | -0.067 *** |  |  |
| MP                 | 0.046 **                             | 0.044 **                             | 0.040 *    |  |  |
| FXI                | -0.029                               | -0.027 *                             | -0.024     |  |  |
| CFM                | -0.040                               | -0.033                               | -0.041     |  |  |

Notes: Reductions in losses by tightening *P*, in percent of losses without policy ( $L_o(\Theta, P = 0)$ ). Confidence bands in brackets. Inference based on cluster bootstrap. \*, \*\*, \*\*\* means significance at 10, 5, 1 percent levels.

### Appendix 2: Robustness to Alternative Monetary Policy Shock. Monetary policy is not helpful.

|                    | Domestic FCI                         |                                      | External FCI                                |                                      |                                      |                                             |
|--------------------|--------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------|
|                    | ω <sub>γ</sub> =1, ω <sub>p</sub> =0 | ω <sub>y</sub> =1, ω <sub>p</sub> =1 | ω <sub>γ</sub> =0.542,<br>ω <sub>p</sub> =1 | ω <sub>γ</sub> =1, ω <sub>p</sub> =0 | ω <sub>γ</sub> =1, ω <sub>p</sub> =1 | ω <sub>y</sub> =0.542,<br>ω <sub>p</sub> =1 |
| MPM All            | -0.089 ***                           | -0.085 ***                           | -0.083 ***                                  | -0.112 ***                           | * -0.107 ***                         | -0.104 ***                                  |
| MPM Borrower-Based | -0.100 ***                           | -0.068 ***                           | -0.065 ***                                  | -0.107 ***                           | * -0.101 ***                         | -0.096 ***                                  |
| MPM FI-Based       | -0.053 **                            | -0.036 **                            | -0.035 **                                   | -0.068 ***                           | * -0.067 ***                         | -0.065 ***                                  |
| MP                 | 0.121 ***                            | · 0.115 ***                          | 0.111 ***                                   | 0.038 *                              | 0.036 *                              | 0.036 *                                     |
| FXI                | -                                    | -                                    | -                                           | -0.022                               | -0.021                               | -0.021                                      |
| CFM                | -                                    | -                                    | -                                           | -0.039                               | -0.034                               | -0.030                                      |
| HF MP              | -0.011                               | -0.011                               | -0.011                                      | -0.025                               | -0.023                               | -0.022                                      |

Notes: Reductions in losses by tightening *P*, in percent of losses without policy ( $L_o(\Theta, P = 0)$ ). Confidence bands in brackets. Inference based on cluster bootstrap. \*, \*\*, \*\*\* means significance at 10, 5, 1 percent levels. HF MP: High-frequency monetary policy shocks.

### Appendix 3: Results are similar. Advanced Economies vs. Emerging Market Economies

|                    | Domestic FCI                         |                                      | External FCI                                |                                      |                                      |                                             |
|--------------------|--------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------|
|                    | ω <sub>γ</sub> =1, ω <sub>p</sub> =0 | ω <sub>γ</sub> =1, ω <sub>p</sub> =1 | ω <sub>y</sub> =0.542,<br>ω <sub>p</sub> =1 | ω <sub>γ</sub> =1, ω <sub>p</sub> =0 | ω <sub>γ</sub> =1, ω <sub>p</sub> =1 | ω <sub>γ</sub> =0.542,<br>ω <sub>p</sub> =1 |
|                    |                                      | Adva                                 | nced economies                              |                                      |                                      |                                             |
| MPM All            | -0.120 **                            | -0.116 **                            | -0.113 **                                   | -0.139 **                            | -0.136 **                            | -0.133 **                                   |
| MPM Borrower-Based | -0.141 **                            | -0.136 **                            | -0.132 *                                    | -0.142 ***                           | -0.139 ***                           | -0.136 ***                                  |
| MPM FI-Based       | -0.027                               | -0.026                               | -0.025                                      | -0.046                               | -0.045                               | -0.045                                      |
| MP                 | 0.127 ***                            | 0.124 ***                            | 0.122 ***                                   | 0.075                                | 0.075                                | 0.075                                       |
| FXI                | -                                    | -                                    | -                                           | 0.051                                | 0.049                                | 0.047                                       |
| CFM                | -                                    | -                                    | -                                           | 0.015                                | 0.015                                | 0.015                                       |
|                    |                                      | Eme                                  | rging economies                             |                                      |                                      |                                             |
| MPM All            | -0.081 ***                           | -0.078 ***                           | -0.075 ***                                  | -0.143 ***                           | -0.062 ***                           | -0.038 ***                                  |
| MPM Borrower-Based | -0.067 **                            | -0.064 **                            | -0.061 **                                   | -0.136 *                             | -0.099 *                             | -0.089 *                                    |
| MPM FI-Based       | -0.074 **                            | -0.072 **                            | -0.070 **                                   | -0.132 ***                           | -0.125 ***                           | -0.120 ***                                  |
| MP                 | 0.086 **                             | 0.080 ***                            | 0.077 ***                                   | 0.092 *                              | 0.089 *                              | 0.086 **                                    |
| FXI                | -                                    | -                                    | -                                           | 0.017                                | 0.014                                | 0.011                                       |
| CFM                | -                                    | -                                    | -                                           | -0.065 *                             | -0.050                               | -0.040                                      |

Notes: Reductions in losses by tightening *P*, in percent of losses without policy ( $L_o(\Theta, P = 0)$ ). Confidence bands in brackets. Inference based on cluster bootstrap. \*, \*\*, \*\*\* means significance at 10, 5, 1 percent levels.