Discussion of

The Financial (In)Stability Real Interest Rate, R**

by Akinci, Benigno, Del Negro, and Queralto

Mark Gertler

NYU & NBER

September, 2022

Motivation

- Connection between financial stability and stance of monetary policy
 - Ceteris Paribus: Increasing interest rates weakens borrower balance sheets
 - In turn, weakened balance sheets reduce credit access, etc
- Other factors may be driving financial instability (e,g, house price collapse)
 - But stance of monetary policy affects if and how crisis plays out
- Standard crisis indicators (e.g. leverage ratios, credit spreads) limited
 - Do not provide clear implications for rate setting
- Standard benchmark: Natural Rate of Interest, R*, silent about financial factors

What This Paper Does

► Constructs benchmark interest rate *R*^{**} where

- $R > R^{**} \rightarrow$ financial distress
- ▶ $R < R^{**} \rightarrow$ no distress

▶ R^{**} is a companion to the natural rate R^*

- $R^{**} > R^* \rightarrow R^*$ compatible with financial stability
- $R^{**} < R^* \rightarrow R^*$ NOT compatible with financial stability
- Approach: Start with model of banking distress
 - ▶ Derive *R*^{**} from mapping with standard measures of distress (leverage, spreads)
 - Add descriptive evidence to show model mapping is reasonable

Simple Banking Crisis Model

Bank balance sheet:

$$Q_t K_t = D_t + E_t$$

Evolution of equity:

$$E_{t+1} = R_t^k Q_t K_t - R_t D_t - Div_t$$

Leverage constraint

$$\frac{Q_t K_t}{E_t} \le \overline{\phi}_t$$

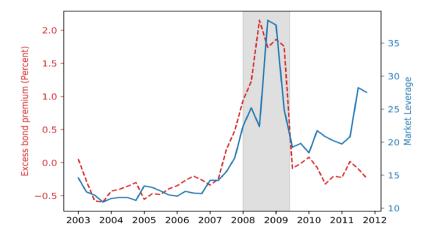
Two Regimes

Based on whether leverage constraint is binding:

1. $\frac{Q_t K_t}{E_t} < \overline{\phi}_t \rightarrow \text{ no limits to arbitrage:}$

$$\overline{R}_t^k \approx R_t$$

2.
$$\frac{Q_t K_t}{E_t} = \overline{\phi}_t \rightarrow \text{bank}$$
 is "capital constrained"
 $\overline{R}_t^k > R_t$


Financial crisis: sharp drop in E_t that tightens constraint, pushing up $\overline{R}_t^k - R_t$

Financial instability rate R_t^{**} :

• Threshold value of R_t at which leverage constraint just binds.

Primary Dealer Market Leverage and Financial EBP

red = Financial EBP, blue = Leverage

Primary dealers include the largest U.S. commercial and investment banks. Dealer leverage from He, Kelly, and Manela (JFE 2017)

Constructing *R*^{**}

1 - Leverage varies inversely with asset price Q_t

$$rac{Q_t K_t}{E_t} = rac{Q_t K_t}{Q_t K_t - D_t} = rac{K_t}{K_t - D_t/Q_t}$$

2 - Q_t varies inversely with R_t

$$Q_t = \sum_{j=t}^{\infty} \frac{\Pi}{R^{j-t}} = \frac{\Pi}{R-1}$$

3 - 1 and 2 \rightarrow leverage $\frac{Q_t K_t}{E_t}$ varies positively with $R_t \rightarrow$ Intuition:

 $R_t \downarrow \to E_t \uparrow$ relative to $Q_t K_t$, relaxing leverage constraint $rac{Q_t K_t}{E_t} < \overline{\phi}_t$

Constructing *R*^{**} (con't)

Given
$$\frac{Q_t K_t}{E_t} = \frac{K_t}{K_t - D_t / Q(\Pi, R^{**})}$$
:

▶ R_t^{**} is the maximum value of R_t that solves

$$\frac{K_t}{K_t - D_t / Q(\Pi, R^{**})} = \overline{\phi}_t$$

- $R_t < R_t^{**}$: leverage constraint not binding
- ▶ $R_t \ge R_t^{**}$: constraint binding → crisis region
- \triangleright R_t^{**} depends on financial conditions

$$\blacktriangleright \hspace{0.1 cm} \text{(i)} \hspace{0.1 cm} D_t \hspace{0.1 cm} \uparrow \hspace{0.1 cm} \rightarrow \hspace{0.1 cm} R_t^{**} \hspace{0.1 cm} \downarrow \hspace{0.1 cm} \text{(ii)} \hspace{0.1 cm} K_t \hspace{0.1 cm} \uparrow \hspace{0.1 cm} \rightarrow \hspace{0.1 cm} R_t^{**} \hspace{0.1 cm} \uparrow \hspace{0.1 cm}$$

• Varies inversely with credit spread $\overline{R}_t^k - R_t$

Generalized Model: Banks also hold safe assets B_t

Banks also hold safe assets B_t :

$$Q_t K_t + B_t = D_t + E_t$$

Evolution of equity:

$$E_{t+1} = R_t^k Q_t K_t + R_t B - R_t^d D_t - Div_t$$

Leverage constraint

$$rac{Q_tK_t+B_t}{E_t}\leq \overline{\phi}(rac{B_t}{Q_tK_t+B_t})_t \;\; ext{with}\; \overline{\phi}'(\cdot)_t>0$$

Safe assets relax constraint

Generalized Model (con't)

Two (extra) implications:

1. R_t^{**} depends also on fraction of safe assets in bank portfolio

(a) Varies positively with $\frac{B_t}{Q_t K_t + B_t}$

- 2. Prolonged low interest rates can move banks into crisis region
 - (a) Reduces rate of return on bank assets \rightarrow reduces accumulation of bank equity

$$E_{t+1} = R_t^k Q_t K_t + R_t B - R_t^d D_t - Div_t$$

(b) \rightarrow Leverage increases $\rightarrow R^{**}$ declines

Some Comments

1 - Model generates inverse relation between R^{**} and credit spreads

 \rightarrow Can recover R^{**} from spreads

Comment: How does *R*^{**} line up with other financial indicators?

2 - $R^{**} < R^*$ suggests tradeoff between financial stability and price/output stability

Comment: Fed should avoid this tradeoff at all costs by using additional tools

- a Macroprudential tools: e.g., capital, liquidity requirements
- **b** Lender of last resort tools: e.g., asset swaps and purchases