## The Financial (In)Stability Real Interest Rate, r\*\*

Ozge Akinci<sup>†\*</sup>, Gianluca Benigno<sup>†\*#</sup>, Marco Del Negro<sup>†\*</sup>, Albert Queralto<sup>‡</sup> Federal Reserve Bank of New York<sup>†</sup>, Federal Reserve Board<sup>‡</sup>, CEPR<sup>\*</sup>, University of Lausanne<sup>#</sup>

#### Financial Stability Considerations for Monetary Policy

#### Federal Reserve Bank of New York September 30, 2022

Disclaimer: The views expressed here do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System.

# Why do we need another \*?

• The *natural rate of interest* r\* is associated with the notion of *macroeconomic* stability: the rate consistent with output equaling its natural rate and constant inflation (Wicksell, Woodford, ..., Laubach & Williams, ...)

• This paper introduces r\*\*, the financial stability interest rate: the threshold real rate above which financial instability arises

• Goal of r\*\*: Map the notion of financial stability onto the interest rate space, and complement r\* as a guide to policy

# Outline

 Illustrate r\*\* in the context of a simple macrofinance model with an occasionally binding financing constraint

- ② Discuss the drivers and dynamics of r\*\*
  - e.g., "financial dominance": persistently low real interest rates trigger financial vulnerability and an eventual drop in r\*\*, which may constrain monetary policy

- **3** Provide an empirical measure of r\*\*
  - Show that the Fed effectively tracked r\*\* in periods of financial stress

# A Model With Financial (In)Stability Regimes

# A Model With Financial (In)Stability Regimes

- Dynamic macrofinance model with financial intermediaries that face *agency frictions* in raising funds → (Gertler & Kiyotaki '10)
- Occasionally binding leverage constraint  $\rightarrow$ 
  - Tranquil times: dynamics resemble run-of-the-mill DSGE
  - Financial instability: financial accelerator, asset fire-sale dynamics

- r\*\* is the threshold real rate above which financial instability arises:

   → the real interest rate that makes the financial constraint just bind
- Use r\*\* as a summary statistic for financial stability, just like r\* is for macro conditions

# The Economy

#### • Bankers

- Hold (risky) capital s<sub>t</sub> and safe asset b<sub>t</sub>
- Households
  - Consume, supply labor, save through bank deposits  $d_t$  (interest  $R_t^d$ )

• The real interest rate on the safe asset, *R<sub>t</sub>*, follows an exogenous process

 $\rightarrow$  In the background we will be thinking of monetary policy as determining  $R_t$ 

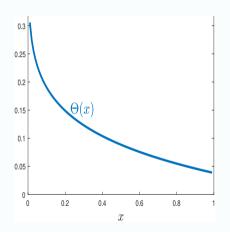
| ASSETS            | LIABILITIES    |
|-------------------|----------------|
| Q <sub>i</sub> st | dt             |
| bt                | n <sub>t</sub> |

### Bankers' Problem

$$V_t(n_t) = \max_{s_t, b_t, d_t} \mathbb{E}_t \Lambda_{t+1}[(1-\sigma)n_{t+1} + \sigma V_{t+1}(n_{t+1})] + \zeta_t b_t$$

 $\zeta_t \rightarrow$  utility from holding safe asset (KVJ *exogenous* safety/liquidity shocks/preferences) subject to

- **1** Evolution of net worth:  $n_t = (R_{Kt} R_{t-1}^d)Q_{t-1}s_{t-1} + (R_{t-1} R_{t-1}^d)b_{t-1} + R_{t-1}^dn_{t-1}$
- **2** Incentive Constraint:


$$\mathcal{W}_t(n_t) \geq \Theta(x_t) \left( Q_t s_t + b_t 
ight), ext{where } x_t = rac{b_t}{Q_t s_t + b_t} ext{ and } \Theta' < 0, \ \Theta'' > 0$$

$$ightarrow$$
 Occasionally binding leverage constraint: -

$$\frac{Q_t s_t + b_t}{n_t} \leq \frac{V_t'}{\Theta(x_t)}$$

max. leverage

# $\Theta(\cdot)$ function



• Financial frictions become more severe when the bankers' portfolio is tilted toward risky assets  $\rightarrow$  vulnerabilities  $\uparrow\uparrow$ 

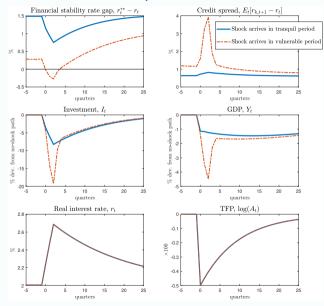
# Financial (In)Stability Regimes

• When the constraint does not bind (financial stability):

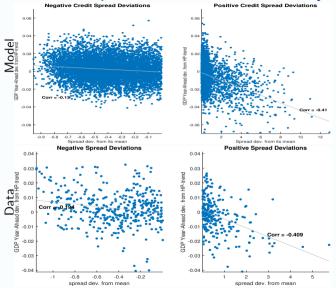
 $ightarrow \mathbb{E}_t(R_{\mathcal{K}t+1}) pprox R_t + \zeta_t$ : Spreads are low (mostly determined by the safety/liquidity preference shock)

• The economy resembles frictionless RBC

- When the constraint binds (*financial instability*):
  - $\mathbb{E}_t[\mathbf{\Omega}_{t+1}(R_{\mathcal{K}t+1}-R_t)] > \zeta_t \rightarrow \textit{spreads are large and volatile}$
  - Responses of the economy to shocks reflect the *nonlinear financial accelerator* effect:  $N_t (\equiv \int n_t) \downarrow \Rightarrow Q_t \downarrow \Rightarrow N_t \downarrow$

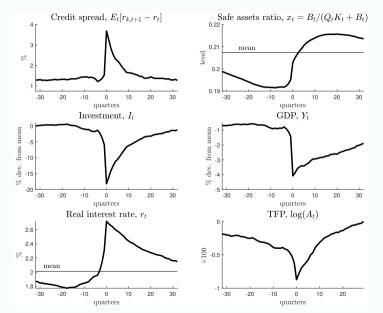

# Constructing r\*\*

• If the economy is in the unconstrained/constrained regime: increase/decrease  $R_t$  such that the constraint just binds/ceases to bind, given the other state variables


 $\Rightarrow$  r\*\* is a *threshold* : real interest rate below r\*\* ensures the economy remains in the financial stability regime

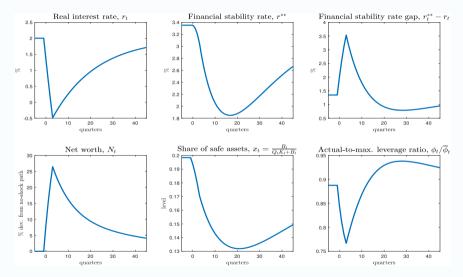
• Financial stability rate gap, **r**<sup>\*\*</sup> - **r**, *depends* on the evolution of other state variables, e.g., leverage and the share of risky assets in banks' portfolio

### State dependent IRFs



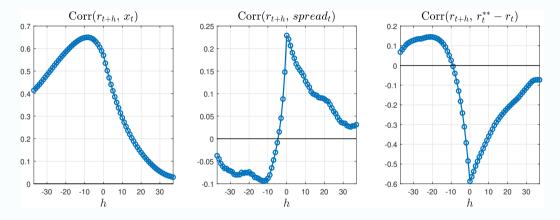

#### Credit spreads and economic activity




• Model captures asymmetries in the relationship between output and credit spreads

#### Average financial crisis in the model

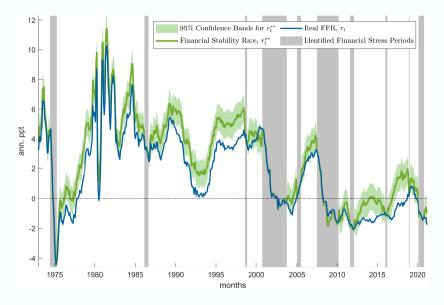



Dynamics of r\*\*

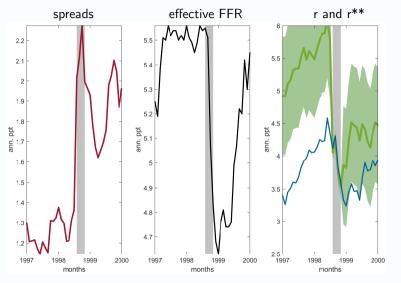
### Dynamics of r\*\*: Impulse responses to low interest rates



• Persistently low rates today cause vulnerabilities to build up  $\rightarrow$  reduce monetary policy space for maintaining "financial stability" in the future

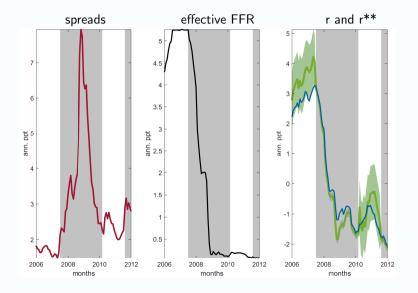

### Real Rate, share of safe assets, and r\*\*-r: Lead-lag correlations




• Low real interest rates today predict search for yield and vulnerabilities (low r\*\*-r) in the future

# Measuring r\*\*

# The financial stability interest rate $r_t^{**}$ in the **data**




LTCM episode



"Greenspan's put"

### **Global Financial Crisis**



# Conclusion

- Introduce a new concept: r\*\*
  - threshold real interest rate above which the tightness of financial conditions may generate financial instability
  - enables us to translate financial vulnerabilities into an object comparable to the monetary policy rate and to the natural real interest rate
- Thank you for your attention!