City Hall Has Been Hacked! The Financial Costs of Lax Cybersecurity

Filippo Curti Ivan T. Ivanov Marco Macchiavelli Tom Zimmermann* Richmond Fed Chicago Fed University of Massachusetts University of Cologne

April 12, 2024

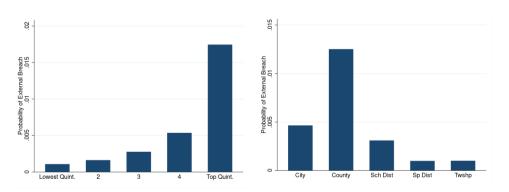
*The views stated herein are those of the authors and are not necessarily the views of the Chicago Fed, the Richmond Fed, or the the Federal Reserve System.

Motivation

- State and local governments are attractive targets for cyber attacks:
 - Store and manage substantial amounts of personal identifiable information (PII)
 - Inadequate cybersecurity
- States and localities operate the nation's infrastructure
 - Cyberattacks such as data breaches more disruptive than attacks on corporates
- ▶ Data breaches have the potential to impose large welfare losses:
 - ▶ Remediation and litigation costs absorb public resources/taxpayer money
 - Negative externalities—leaked PII facilitates fraudulent activity

Cybersecurity at State and Local Governments

- ▶ Effect of data breaches on governments:
 - Negative abnormal bond returns in the secondary market
 - ► Increase in financing costs in the primary market
- ▶ The implementation of data breach notification laws at the state level:
 - Staggered implementation between 2002 and 2021 (penalties in some cases)
 - ▶ No effect on the incidence of future data breaches (despite higher spending)
 - Incentives to bolster cybersecurity may still be insufficient


Data

- ▶ Data on operational risk incidents (external and internal) from Advisen:
 - Over 1,000 attacked public entities, over 2,200 external data breaches since 2004
 - ▶ Bridge to other data via the Census of Governments
- Primary market issuance from Mergent:
 - Detailed information on bond characteristics, yields, and amounts.
- Secondary market data on municipal bond trading from the MSRB:
 - All transactions since 2010.
- ► Hand-collected data on state breach notification laws:
 - ▶ National conference of state legislatures (NCSL), LexisNexis
 - ► Enactment and effective dates, covered entities, penalties for violations (if any)

Curti, Ivanov, Macchiavelli, Zimmermann City Hall Has Been Hacked! 4/16

Data

▶ Risk of external data breaches across government size and type.

A. Government Size

B. Government Type

Data Breaches and Abnormal Bond Returns

Examine the bond response to data breaches using an event study approach:

$$r_{b,s,k} = (D_{b,s} \cdot y_{b,s} - D_{b,k} \cdot y_{b,k})$$
$$ar_{b,s,k} = r_{b,s,k} - \sum_{t=k+1}^{s} R_t^l$$

- $ightharpoonup y_{b,t}$ $(D_{b,t})$ yield to maturity (duration) of bond b at time t
- $ightharpoonup r_{b,s,k}$ duration-adjusted return on bond b btw two adjacent trades, s and k
- lndex return, R_t^l , l denotes remaining maturity-credit rating buckets

Data Breaches and Abnormal Bond Returns

▶ Negative abnormal returns around external data breaches of about 16-17 bps.

Abnorr	Abnormal Bond Returns					
Duration Adjustment	Yes	Yes	Yes			
Risk/Maturity Adjustment	No	Yes	Yes			
10-day Return	No	No	Yes			
Bond Return	-16.112***	-17.744***	-5.301***			
	(2.433)	(1.295)	(1.516)			
Observations	36,179	35,679	35,677			
Number of Events	2,582	2,573	2,573			

Data Breaches and Abnormal Bond Returns

▶ Returns similar across different types of bonds.

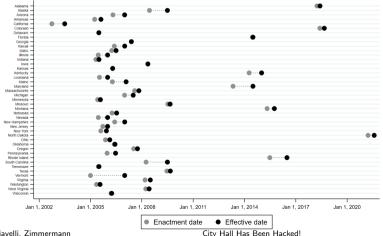
Abnormal bond returns and bond heterogeneity

	Collateral			Priority		
	Rev	GO	Double	Senior	Subordinated	
Bond Return	-17.808***	-18.233***	-17.518***	-15.154***	-18.891***	
	(1.987)	(1.727)	(6.267)	(2.025)	(1.786)	
Observations	14,844	18,960	522	10,947	24,732	
Number of Events	1,674	810	117	1,533	2,221	

Data Breaches and Issuance Costs

- Primary markets provide unique insights into consequences for taxpayers.
- ▶ Use yields of muni bond offerings as a measure of issuance costs

$$Y_{i,t} = \sum_{j=-2}^{j \ge +3} \beta_j Breach_{i,t+j} + \delta X + \mu + \epsilon_{i,t}$$


- $ightharpoonup Y_{i,t} = \{ \text{bond issuance, yields, offering type} \}$
- ▶ $Breach_{i,t+j} = 1$ if government i suffers an external data breach in year t + j
- ▶ government type-year, state-year, entity FEs & size controls

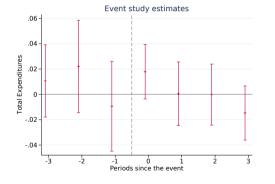
External Data Breaches and Primary Bond Markets

	(1)	(2)	(3)	(4)	(5)	(6)	
Outcome variable:	Log(Issuance)		Offerin	Offering Yield		Negotiated	
${\sf Breach\ Year}{=}-2$	0.010 (0.038)	-0.005 (0.036)	0.057 (0.041)	0.064 (0.043)	0.010 (0.017)	0.009 (0.015)	
${\sf Breach\ Year} = -1$	0.019 (0.032)	0.000 (0.034)	0.034 (0.036)	0.029 (0.039)	0.006 (0.025)	0.002 (0.026)	
${\sf Breach\ Year} = 0$	-0.030 (0.044)	-0.043 (0.045)	0.107** (0.040)	0.113*** (0.039)	0.039* (0.023)	0.028 (0.025)	
${\sf Breach\ Year} = +1$	0.027 (0.028)	0.047* (0.026)	0.102** (0.045)	0.116** (0.044)	0.034 (0.027)	0.039 (0.028)	
${\sf Breach\ Year} = +2$	-0.019 (0.034)	-0.028 (0.037)	0.056 (0.047)	0.046 (0.051)	0.056** (0.026)	0.047* (0.025)	
$Breach\ Year{\geq} + 3$	0.000 (0.028)	0.010 (0.027)	0.129*** (0.046)	0.104** (0.047)	0.048 (0.035)	0.036 (0.033)	
R^2	0.721	0.719	0.721	0.726	0.487	0.505	
N	48,206	42,777	48,206	42,777	33,360	29,887	
Government FE	Yes	Yes	Yes	Yes	Yes	Yes	
$MatMonths{\times}Year\;FE$	Yes	Yes	Yes	Yes	Yes	Yes	
Type×Year FE	No	Yes	No	Yes	No	Yes	
$Type \times Size$	No	Yes	No	Yes	No	Yes	

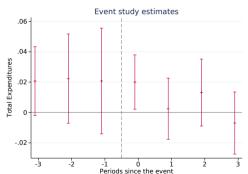
Data Breach Notification Laws

- Most states now have data breach notification laws
- ▶ Public entities required to notify residents of data breaches

Data Breach Notification Laws

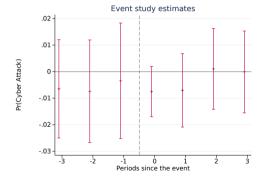

- ► Role for regulation?
 - Higher financing costs detract resources from the community
 - Loss of personal data increases chance of fraud
 - ▶ Regulation may incentivize investment in cybersecurity by penalizing breaches

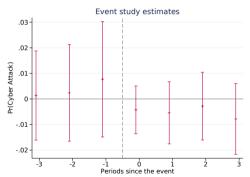
$$Y_{i,s,t} = \sum_{j=-2}^{4+} \beta_j Law_{s,t+j} + \mu + \epsilon_{i,s,t}$$


- $ightharpoonup Law_{s,t+j}$ equals one if entity i in state s is covered by law is enacted j years ago
- treatment whenever law allows for monetary penalties and apply to local govt

Effect of Data Breach Notification Laws

A. Total Expenditures (Local)


B. Total Expenditures (Any)


► Temporary increase in expenditures in the enactment year

Effect of Data Breach Notification Laws

C. Prob. of Cyberattack (Local)

D. Prob. of Cyberattack (Any)

- ▶ No improvement in cybersecurity
- ▶ No significant reduction in the likelihood of future data breaches

Effectiveness of Breach Notification

- ▶ Data breach notification laws not associated with better cybersecurity
- ► Tradeoff between ex-ante cost to improve cybersecurity + ex-post remediation costs
- Alternative incentive schemes:
 - Safe harbor against data breach lawsuits if comply with industry-recognized cybersecurity programs
 - Possibly providing incentives to invest ex-ante

Conclusion

- Significant costs of neglecting cybersecurity
 - Data breaches expose municipalities to additional financing costs and expenditures
 - ► This is in addition to the loss of privacy and fraud
- ▶ Data breach laws appear ineffective at reducing cyber risk:
 - ▶ They do not reduce the likelihood of future external data breaches