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Abstract

We examine inventory adjustment in the U.S. manufacturing sector using quarterly �rm-
level data over the period 1978{97. Our evidence indicates that the inventory investment
process is nonlinear and asymmetric, results consistent with a nonconvex adjustment cost
structure. The inventory adjustment process di�ers over the business cycle: for a given level
of excess inventories, �rms disinvest more in recessions than they do in expansions. The in-
ventory adjustment process has changed little between the 1980s and 1990s, suggesting that
recent advances in inventory control have had little e�ect on adjustment costs. Neverthe-
less, the optimal inventory-sales ratio in the durable goods sector has declined signi�cantly
during our sample period.

JEL Classi�cation: D24, E22, E37
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1 Introduction

The cyclical behavior of inventories has been an important feature of aggregate 
uctuations

in the U.S. economy. Over �fty years ago, Abramowitz (1950) showed that a plunge in

inventory investment accounts for most of a contraction in output during a typical U.S.

recession prior to World War II|a statistical �nding that has continued to hold in the

postwar data (see, for example, Blinder and Maccini 1991). This empirical regularity of

aggregate output 
uctuations has led macroeconomists to examine inventory investment

as a potentially important channel for the propagation and the ampli�cation of exogenous

shocks to the economy.

The vast majority of macroeconomic research concerned with inventory dynamics has

utilized the linear quadratic (L-Q) model of Holt, Modigliani, Muth, and Simon (1960).

In the canonical L-Q model, the convex production technology at the microeconomic level,

combined with the representative agent assumption, yields aggregate inventory dynamics

that have proved di�cult to match with the data. In particular, as documented by Ramey

and West (1999), the strong procyclical 
uctuations in inventory investment and the per-

sistence of inventory movements conditional on sales are two features of the data that are

di�cult to reconcile with the L-Q model.

In view of the L-Q model's poor empirical performance, a number of authors have

argued that the model's lack of empirical success stems from the assumption of convex

production technology at the micro-level; see, for instance, Blinder (1981), Caplin (1985),

and Blinder and Maccini (1991). The linear inventory decision rules implied by this as-

sumption, although relatively easy to aggregate and estimate, do not capture potential

nonlinear features of microeconomic inventory behavior. Among others, these features in-

clude (S; s){type inventory policies, resulting from the presence of �xed or proportional

costs in the production technology, and asymmetries or irreversibilities induced by di�ering

costs between drawing down and expanding inventory levels.1

Our goal in this paper is to examine the extent to which �rm-level inventory adjust-

ment in the U.S. manufacturing sector di�ers from the adjustment process implied by the

L-Q model. We embed an inventory problem into a 
exible and empirically tractable

framework|the so-called generalized (S; s) approach|developed in a series of papers by

Caballero, Engel, and Haltiwanger.2 A fundamental element of this approach is the adjust-

1The possibility of technological nonconvexities in the context of the L-Q model, in particular increasing
returns to scale, is examined by Ramey (1991), who �nds industry-level evidence consistent with �rms
operating in a region of declining marginal costs.

2For a general theoretical treatment of adjustment and aggregate dynamics in (S; s) economies, see
Caballero and Engel (1991). For applications of the generalized (S; s) approach to business �xed investment,
see Caballero (1999), Caballero and Engel (1999), and Caballero, Engel, and Haltiwanger (1995); employment
dynamics are examined by Caballero and Engel (1993) and Caballero, Engel, and Haltiwanger (1997).
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ment function of the control variable in question. In our model, the inventory adjustment

function relates the fraction of the deviation between the \target" and the actual level of in-

ventories that �rms close during a period to the size of that deviation. The main advantage

of our approach is that the inventory adjustment function is estimated nonparametrically

and, therefore, can take on a wide variety of shapes, including those implied by the L-Q

model, a simple (S; s) model, and a more general nonlinear, asymmetric adjustment model.

Our analysis of inventory investment dynamics applies the generalized (S; s) frame-

work to a long panel of high-frequency �rm-level data for the U.S. manufacturing sector.

Compared to other micro-level studies, our �rm-level data set has several advantages for

studying aggregate inventory behavior. First, our data set comprises a large portion of the

U.S. manufacturing sector, averaging over 60 percent of aggregate manufacturing invento-

ries. Second, our data cover the time period from 1978 to 1997 and thus include a number

of business cycles. Third, the frequency of observation is quarterly, which is of greatest

relevance for studying aggregate business cycle 
uctuations.

Contrary to the predictions of the L-Q model, our results indicate that signi�cant non-

linearities and asymmetries exist in the estimated inventory adjustment functions. The

nonlinearity is consistent with the use of (S; s){type inventory policies, while the asym-

metries suggest the presence of irreversibilities in the production technology. Given the

prominence of inventories in aggregate 
uctuations, we examine the adjustment function

at various stages of a business cycle. We �nd that for a given level of excess inventories,

�rms reduce their inventory holdings more in recessions than they do in expansions, a result

consistent with the cyclical pattern of inventory investment in the aggregate data.

The long time span of our panel also enables us to examine the extent to which the

inventory adjustment process may have changed over time. In particular, there has been

considerable debate whether improvements in inventory control methods during the 1980s

(e.g., just-in-time techniques, bar coding, etc.) may have muted the inventory cycle, trans-

lating into reduced volatility of aggregate output 
uctuations; see, for instance, Filardo

(1995), Allen (1995), and McConnell and Perez-Quiros (1998).

Our results paint a mixed picture. Although the rates of adjustment toward the target

inventory levels are somewhat higher in the 1990s than in the 1980s, the decade-speci�c ad-

justment functions exhibit very similar shapes, indicating that the inventory adjustment pro-

cess has not changed signi�cantly during our sample period. Moreover, the cross-sectional

dispersion of inventory deviations from their target levels has not declined over time, a

result consistent with a stable inventory adjustment process. However, the average target

inventory-sales ratio in the durable goods sector has declined signi�cantly during our sam-

ple period, indicating that advances in inventory control have had a sizable e�ect on this

margin of �rms' inventory behavior. The relatively stable adjustment cost structure on the
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one hand, and the declining level of target inventory holdings relative to sales on the other,

together imply that the e�ect of inventory control improvements on aggregate inventory


uctuations remains an open question.

The rest of the paper is organized as follows. In the next section, we discuss the issues

raised by linear versus nonlinear inventory control. In Section 3, we outline our approach to

the study of inventory dynamics and discuss the details behind the construction of our key

state variable|the deviation between actual and target levels of inventories. In Section 4,

we provide a brief description of the data and econometric issues. In Section 5, we present

our main results, and Section 6 concludes.

2 Linear versus Nonlinear Inventory Control

As discussed in the introduction, a majority of empirical inventory research is based on the

L-Q model. The key assumption of this model is that �rms maximize pro�ts subject to a

convex production technology. This assumption implies that �rms will attempt to smooth

production in the face of stochastic sales. Embedding the maximization problem into a

representative agent framework and using quadratic functional forms to approximate the

cost structure associated with the convex production technology, the L-Q model yields a

microstructure that is relatively easy to aggregate and estimate.

Although this microstructure has provided substantial insights into �rm and aggregate

inventory behavior, it has had di�culty explaining two fundamental and robust features of

inventory investment. First, inventory investment is highly procyclical: inventories tend to

be built up gradually in expansions and to be drawn down rapidly in recessions. Second,

inventory movements exhibit considerable persistence, even after conditioning on sales.3

Within the linear-quadratic/representative-agent framework, two explanations have been

advanced to reconcile these two facts with the model. The �rst explanation assumes that

highly persistent exogenous shocks a�ect the cost of production. These cost shocks cause

�rms to bunch production|leading to procyclical inventory investment|while the built-in

persistence of the cost shock process is transmitted to the inventory-sales relationship.

The second explanation posits a strong accelerator motive and high costs of adjusting

production. The accelerator motive, which links current inventories to expected future

sales, and positively serially correlated sales cause inventory investment to be procyclical.

The high adjustment costs imply that a return to the long-run equilibrium following a

3Despite mixed evidence that inventories and sales are cointegrated at the industry or the aggregate
level, the presumably stationary linear combinations of inventories and sales|the so-called inventory-sales
relationship in the Ramey and West (1999) terminology|exhibit very high �rst- and second-order autocor-
relations, even at an annual frequency, indicating that the adjustment to long-run equilibrium takes place
over many periods.
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perturbation of the inventory-sales relationship will be gradual, because �rms will adjust

production slowly to minimize costs.

Although each explanation is economically plausible, the empirical support for either

is tenuous at best. The persistent cost shock hypothesis seems to work only when these

shocks are modeled as unobservable to the econometrician. Although it is plausible that

the �rm's cost structure could be a�ected by unobservable disturbances, their observable

counterparts such as real unit labor costs and interest rates appear to have no apprecia-

ble e�ect on inventory investment. Evidence in favor of the adjustment cost hypothesis

is equally unpersuasive. Estimates of adjustment cost parameters are unstable across dif-

ferent speci�cations and estimation techniques and range from negligible to economically

implausible.4

In contrast to the L-Q vein of inventory research, a considerable operations research

literature, starting with Scarf (1960), emphasizes �xed costs and other nonconvexities in

the production planning problem.5 From the macroeconomic perspective, Blinder (1981)

and Blinder and Maccini (1991) have provided compelling arguments that nonconvexities

in the production process may be crucial for our understanding of aggregate inventory

dynamics. The optimal inventory policy in such an environment is of the (S; s){type,

implying periods of inaction when inventories are depleted, followed by periods of activity

during which inventories are replenished.

Such nonlinear microeconomic inventory behavior has the potential to a�ect aggregate

inventory dynamics and, furthermore, calls into question the representative agent assump-

tion underlying most applied macro-inventory research. If �rms follow state-dependent

(S; s) policies, the time-path of the entire cross-sectional distribution of inventories has an

e�ect on aggregate dynamics. In such an economy, a negative aggregate shock could result

in fewer �rms reaching their trigger inventory levels, exacerbating the decline in inventory

investment beyond what would be expected under a representative agent L-Q model.

In part because of these complications, empirical macroeconomists have been reluctant

to forsake the analytically tractable L-Q framework for (S; s){type models. Although most

economists would agree that a �rm's production/inventory problem will likely di�er from

4As is the case in all applied work, both at the micro- and macro-level, the inventory literature is not
immune to serious measurement problems in the data that undoubtedly contribute to the poor empirical
performance of the L-Q model. Some studies try to mitigate this problem by using the presumably more
accurate, though considerably more limited, physical product data. These studies �nd somewhat greater
support for the L-Q model, in particular for the production smoothing motive; see Fair (1989) and Krane
and Braun (1991) for examples of this approach.
Alternatively, Schuh (1996) dispenses with the representative agent assumption. Using monthly plant-

level data, Schuh (1996) estimates the L-Q model and �nds that accounting for the aggregation bias|in
both the cross-sectional and the time-series dimensions|moderately improves the �t of the L-Q model.

5See Hordijk and Van der Duyn Schouten (1986) for a general treatment of continuous review inventory
models with �xed costs.
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the assumptions underlying the L-Q model, they argue that the aggregation across goods

and time may smooth the e�ects of any nonconvexities. As a result, the L-Q model remains

a reasonable approximation to the inventory behavior of interest to macroeconomists; see,

for example, Blanchard (1983) and Ramey and West (1999).

Moreover, at the macro-level, empirical evidence supportive of (S; s){type models is lim-

ited.6 In particular, using the theoretical aggregation results for dynamic (S; s) economies

derived by Caplin (1985) and Caballero and Engel (1991), several studies have attempted

to test the predictions of a simple (S; s) model using both aggregate and �rm-level data for

the trade sector.7 The basic conclusion of these studies is that the time-series behavior of

inventory investment in the trade sector is consistent with the (S; s) model's steady-state

implications. The problem with this conclusion, however, is twofold. First, the aggregate

steady-state results of Caplin (1985) are valid only under restrictive assumptions of exoge-

nous, serially uncorrelated sales, time-invariant (S; s) bands, and no delivery lags.8 Second,

the steady-state, reduced-form relationships between inventory investment and sales are also

consistent with an economically plausible parameterization of the L-Q model with stockout

costs; see, for example, Blinder (1986), Kahn (1987), and Krane (1994).9

Therefore, if we are to shed light on whether nonconvexities matter for inventory behav-

ior at business cycle frequencies, we must study inventory dynamics rather than steady-state

behavior. Because structural (S; s){type models must be kept simple to derive analytic re-

sults useful for empirical analysis, the data almost surely would reject such models. Thus,

in our approach, we will sacri�ce some structural rigor to provide a tractable empirical

framework, which nonetheless encompasses the possibility of nonlinear behavior.

3 Inventories and the Generalized (S; s) Approach

In this section, we describe the generalized (S; s) approach used to analyze �rm-level inven-

tory investment decisions. The �rst subsection discusses the basic elements of our model,

while the second discusses the speci�cs in measuring the state variable of the model.

6At the micro-level, Hall and Rust (1999) examine nearly two years of daily transactions data from a
steel wholesaler. They �nd the �rm's inventory/order policies are consistent with a state-dependent (S; s)
model. However, their data are probably too limited in scope to change the opinions of those skeptical about
using these models to study aggregate inventory behavior.

7See Mosser (1988, 1991), Episcopos (1996), and McCarthy and Zakraj�sek (1997).
8Mosser (1988, 1991) and McCarthy and Zakraj�sek (1997) attempt to allow for delivery lags and serial

correlation in sales and continue to �nd support for the (S; s) model.
9To address this concern, McCarthy and Zakraj�sek (1997) also estimate an Euler equation associated

with the L-Q model. They �nd that, although the model is rejected at the industry level, estimates of the
structural cost parameters are economically reasonable and statistically signi�cant at the �rm level; however,
the over-identifying restrictions imposed by the model are rejected, and the parameter estimates are not
stable across di�erent asymptotically equivalent normalizations.
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3.1 Basic Elements

The premise underlying our analysis is that a �rm's inventory adjustment within a period

depends upon the size of its perceived inventory shortfall or excess. In particular, we allow

for the possibility that �rms may respond to a greater degree as inventories move further

away from their target levels. If such nonlinear inventory adjustment is detected, it would

be indicative of nonconvexities in the production process.

At the microeconomic level, inventory investment in our model depends upon a single

state variable|the log deviation between target and actual levels of inventories, which we

label as the inventory deviation index z:

zit � lnH�

it � lnHit�1: (1)

In equation 1, i indexes �rms, t indexes time, and Hit and H�

it denote actual and target

real end of period t inventory stocks, respectively. It is important to note that because zit

depends on H�

it, a theoretical construct, it is model-dependent.

Although �rms may continuously monitor their inventories and sales, observations in

the model are at discrete intervals. Therefore, the timing of shocks and adjustment within

a period needs to be spelled out. In our timing conventions, we follow Caballero, Engel, and

Haltiwanger (1997) and assume that although �rms may experience a sequence of shocks

within a period, these shocks can be summarized by a single aggregate shock �t common

to all �rms and a single idiosyncratic shock �it that has a zero cross-sectional mean in each

period. After observing both shocks, �rms determine their new target inventory levels H�

it

and thus their inventory deviation zit. Firms then adjust their inventory levels accordingly,

and the process is repeated.

The evolution of zit over time thus re
ects the shocks to a �rm's target inventory level

and its adjustments in response to these shocks. Using equation 1 and our within-period

timing assumptions, we can decompose the change in a �rm's inventory deviation index

between periods t� 1 and t, �zit, as

�zit = �lnH�

it ��lnHit�1 = (�t + �it)��lnHit�1: (2)

The next element underlying our analysis is the cross-section of �rms' inventory de-

viations in period t, denoted by f(z; t). This is the cross-sectional probability density of

�rms' inventory deviations immediately preceding inventory adjustments during period t.

Therefore, the fraction of �rms with inventory deviations between z and z + dz in period t

is approximately equal to f(z; t)dz.

The last element in our framework is the inventory adjustment function, denoted by

�(z; t). This function maps the inventory deviation z to the fraction of that deviation that
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is closed by a �rm within a period. To compute it, we determine which �rms have an

inventory deviation close to z in period t and calculate the fraction of the deviation closed

on average by those �rms. It then follows that the average inventory growth rate for �rms

with inventory deviation z in period t is equal to z�(z; t).

Much of our empirical analysis will focus on the shape of the adjustment function �(z; t),

because its shape provides considerable information about the nature of production technol-

ogy. In particular, a constant adjustment function, �(z; t) = �0 for all t, is consistent with

a time-invariant convex adjustment technology and generates aggregate inventory dynamics

identical to those implied by a representative-agent model with quadratic adjustment costs;

see, for instance, Caballero and Engel (1993). Therefore, if the estimated adjustment func-

tion di�ers from a constant function, this provides evidence consistent with the presence of

nonconvexities in the inventory adjustment process.

To conclude this subsection, we discuss how the three elements underlying our analysis

combine to relate �rm-level inventory investment decisions to aggregate inventory dynamics.

Letting �lnHA
t denote the aggregate growth rate of inventories in period t, the preceding

de�nitions imply that

�lnHA
t =

Z
zw(z; t)�(z; t)f(z; t)dz; (3)

where w(z; t) � 0 for all t is a weighting function.

Equation 3 shows that the dynamics of aggregate inventory investment are determined

by the interaction between the adjustment function and the shifts in the cross-sectional

density of deviations induced by aggregate and idiosyncratic shocks. In general, as long

as the adjustment function �(z; t) depends explicitly on z, aspects of the cross-sectional

distribution other than its mean (e.g., dispersion and skewness) will in
uence aggregate

inventory dynamics.10

3.2 Measuring Inventory Deviations

A key to our analysis is the construction of a measure of the inventory deviation index z. To

do so, we need to formulate and estimate a model for H�

it, the unobserved target inventory

level. In formulating such a model, we assume that in the absence of adjustment costs,

a �rm's objective is to balance the costs of a potential stockout with the costs of holding

inventories. As in the standard L-Q model, this tradeo� can be captured by the following

10In fact, Caballero and Engel (1993) and Caballero, Engel, and Haltiwanger (1995, 1997) test this impli-
cation for aggregate investment and employment by assuming a time-invariant, polynomial approximation
to the adjustment function|that is, �(z; t) =

Pp

j=0
�jz

j for all t. Under such assumption, equation 3

implies that the aggregate inventory growth depends linearly on the �rst p+ 1 (weighted) moments of the
cross-sectional distribution f(z; t); for a criticism of such regressions, see Veracierto (1998).
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quadratic cost function:

C(hit;mit; sit+1) =
1

2
[hit � (A(mit) + 
iEitsit+1)]

2 ; (4)

where hit denotes the logarithm of inventories at the end of period t, sit+1 denotes the

logarithm of real sales in period t+1, Eit is the expectations operator for �rm i conditional

on all the information through the end of period t, and 
i > 0 is a �rm-speci�c cost elasticity

with respect to expected future sales. The function A(�) governs the signi�cance of stockout

costs relative to holding costs and depends on the vector of variables mit.
11

The function A(�) in equation 4 determines the optimal inventory-sales relationship. We

allow this inventory-sales relationship to depend on the vector of �rm-speci�c variables mit.

The source of this variation could re
ect, for example, idiosyncratic and aggregate shocks to

the cost of production. By a�ecting the opportunity costs of holding inventories, such cost

shocks may induce variation in stockout costs relative to holding costs.12 In addition, the

optimal inventory-sales ratio is likely to vary because of seasonal factors. Finally, changes

in inventory control techniques may induce long-run trends in the optimal inventory-sales

relationship that are not captured by other variables. To allow for such variation in the

inventory-sales relationship, we assume that mit = (d0t; cit; cit+1)
0, where dt is a k-vector of

nonstochastic variables (to be speci�ed later), cit is the logarithm of the cost per unit of

output in period t, and we let A(�) take on the following log-linear form:

A(dt; cit; cit+1) = �0idt + �icit + �iEit�cit+1; (5)

where �i is the k-vector of unknown �rm-speci�c parameters corresponding to the vector of

nonstochastic variables dt. Firm-speci�c parameters �i < 0 and �i > 0 measure the extent

to which inventories are used to bu�er production from cost shocks.

Using equations 4 and 5 in a standard intertemporal cost minimization problem, it

follows that the optimal log-level of inventories h�it satis�es the �rst-order condition,

h�it = �0idt + 
isit + �icit + 
iEit�sit+1 + �iEit�cit+1: (6)

Using equation 6, we can now derive our measure of the inventory deviation index z. First,

let eit denote the inventory deviation at the end of period t, after the adjustment has taken

11Compared to the typical accelerator term in the L-Q model, our speci�cation of the tradeo� between
inventory holding costs and stockout avoidance is somewhat nonstandard, as all variables are stated in
logarithms. Hence in our speci�cation, the �rm's cost function depends on the percentage di�erence between
the target and actual inventory levels rather than the absolute di�erence between the two. With �rm-level
data, we believe that the log-speci�cation provides a more natural description of these costs.

12Speci�cally, higher current costs would tend to reduce the current target level of inventories given sales,
whereas greater expected future growth of costs would tend to increase the current target inventories given
sales; Kahn (1992) derives a version of the L-Q model that formalizes this intuition.
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place. It then follows that,

eit = h�it � hit; (7)

or

eit = �0idt + 
isit + �icit + 
iEit�sit+1 + �iEit�cit+1 � hit: (8)

Note that from equations 1 and 7, eit di�ers from zit only in that the former incorporates

the inventory adjustment during the period|that is, eit = zit ��hit.

In our model, the time-series properties of the ex post inventory deviation eit are crucial

for identifying the parameters of the model and thus the optimal inventory level. With con-

tinuous monitoring of inventories and observations at discrete intervals, the post-adjustment

deviations re
ect two factors. First, although we assume that all the adjustment occurs at

the end of the period, the actual �rm-level inventory investment decision(s) in our data may

take place at times that do not coincide with the observation interval. Second, �rms may

not adjust inventories to their optimal level.

In this context, we assume that deviations following the adjustment do not persist

inde�nitely and that neither factor causes a systematic bias in the observed ex post in-

ventory deviations. This implies that for each �rm i, eit is a realization from a stationary

stochastic process, with an unconditional mean equal to zero, E[eit] = 0, and �nite variance,

E[e2it] = �2i , for all i. Therefore, eit can be considered a random disturbance in the following

regression:

hit = �0idt + 
isit + �icit + 
iEit�sit+1 + �iEit�cit+1 � eit: (9)

To estimate equation 9, we need to specify the k-vector of nonstochastic variables dt

and parameterize the exogenous forcing processes for �sit and �cit. We assume that

the deterministic part of the stockout avoidance parameter, dt, consists of low- and high-

frequency components. The low-frequency component includes linear and quadratic time

trends and re
ects such in
uences as advances in inventory monitoring technology, changes

in the �rm's relationship with its suppliers, and changes in product diversity over time. The

high-frequency component captures movements in the stockout avoidance behavior associ-

ated with seasonal 
uctuations. Thus, dt = (q(t)0; t; t2)0, where q(t) = (q1(t); : : : ; q4(t))
0 is a

vector of quarterly indicator variables.

Finally, we assume that both the growth of sales, �sit, and the growth of costs per unit

of output, �cit, can be represented by a stationary, �rm-speci�c AR(4) process.13 Thus,

the conditional expectations of �sit+1 and �cit+1 in equation 9 can be replaced by four

lags of these variables. Making this substitution, we obtain the regression equation used to

13We have experimented with the AR speci�cations of lag length 2; 3; : : : ; 6 with a negligible e�ect on our
results.
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estimate the inventory deviation index z,

hit = �0idt + 
isit + �icit +
4X

�=1

�i��sit+1�� +
4X

�=1

'i��cit+1�� + uit; (10)

where uit = �eit, and the reduced-form parameters �i� and 'i� , � = 1; : : : ; 4, are a com-

bination of structural parameters 
i and �i and the parameters of the exogenous forcing

processes for �sit and �cit, respectively. (Note that in equation 10, the structural param-

eter �i is not identi�ed.)

The negative of the estimated residual ûit from equation 10 is our estimate of eit. To

derive an estimate of zit, the state variable in our model, recall that equations 1 and 7 imply

that zit di�ers from eit only in that the latter incorporates adjustment. Therefore, using

our estimate of the ex post deviation eit,

ẑit = êit +�hit; (11)

where �hit denotes the growth rate of inventories of �rm i in period t.

4 Data and Econometric Methodology

4.1 Data

The data set used in our analysis come from the Standard and Poor's COMPUSTAT quar-

terly P/S/T, Full Coverage, and Research data �les. The data set consists of a panel of

2,169 manufacturing �rms and covers the time period 1978:Q1 to 1997:Q4 (80 quarters).

The panel is unbalanced, with the minimum continuous tenure of 20 quarters. After elimi-

nating �rms with gaps in the time-series dimension or implausible entries, we are left with

a total of 92,163 �rm/quarter observations. During our sample period, the �rms in the

panel account, on average, for 61 percent of aggregate non-farm manufacturing invento-

ries. The Data Appendix contains details on the exact sample selection procedure, industry

composition, the construction of variables, as well as summary statistics.

Let us make one additional point concerning the data. If nonconvexities are important

in determining inventory investment decisions, plant-level data may be preferable to �rm-

level data. Many decisions concerning inventory investment are made at the plant level.

For example, plants within a single �rm that produce di�erent products may have inventory

policies that depend on the demand for the particular products that each plant produces.

Thus, to the extent that individual plants operate as independent entities within a multi-

plant �rm, the distribution of shocks and inventory deviations across plants within a �rm

may a�ect �rm-level inventory dynamics.
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Moreover, nonlinear inventory adjustment is likely to be more apparent at less aggre-

gated levels. For example, total inventories of the �rm studied by Hall and Rust (1999)

exhibit considerably smoother behavior at the daily frequency than do the inventories for

each individual product category. Thus, concentrating our analysis at the �rm level may

lose some important information concerning the nonlinear adjustment at the fundamental

microeconomic level.

Nevertheless, many aspects of inventory decisions are centralized within the �rm. Fin-

ished goods inventories may go to a centralized distribution center, which enables the �rm

to make production and inventory decisions more e�ciently. Furthermore, �nancial condi-

tions and capital market access are �rm- rather than plant-level phenomena. Hence, the

well-documented sensitivity of inventory investment to movements in internal funds or net

worth is evidence of the role that nonconvexities may play at the �rm level. Thus, much

of the e�ect that nonconvexities may have on inventory adjustment can be studied at the

�rm level. Moreover, it is interesting to examine how much aggregation to the �rm level,

as well as time aggregation, convexi�es the nonconvexities at less aggregated levels.

4.2 Econometric Methodology

In this section, we discuss the details behind estimation of equation 10. For notational

convenience, let Xit = (d0t; sit; cit;�sit; : : : ;�sit�3;�cit; : : : ;�cit�3)
0 denote the vector of

all explanatory variables in equation 10, and let �i = (�0i; 
i; �i; �i1; : : : ; �i4; 'i1; : : : ; 'i4)
0

denote the corresponding vector of parameters. Observing N �rms over Ti, i = 1; : : : ; N ,

periods, we can write equation 10 for �rm i compactly as,

hi = Xi�i + ui; i = 1; : : : ; N: (12)

Our primary concern in equation 12 is the problem of parameter heterogeneity across

�rms. It is widely recognized that parameter heterogeneity at the micro-level|in both

cross-sectional and time-series dimensions|can have important consequences for estimation

and inference. As shown by Mairesse and Griliches (1990) and Schuh (1996), for instance,

evidence of slope heterogeneity from �rm-level panels is pervasive.

A parsimonious speci�cation that incorporates such parameter heterogeneity is the ran-

dom coe�cients model (RCM); see, for example, Hsiao (1996). In the RCM speci�cation,

all the parameters of the model are random variables and stochastic speci�cations are intro-

duced to capture parameter heterogeneity. The RCM approach to parameter heterogeneity

reduces the number of parameters to be estimated considerably while still allowing the

coe�cients to di�er (randomly) across cross-sectional units and/or time.

To allow for variation in �i across �rms, we follow standard RCM assumptions that �i =

11



�+�i, where �i is a random vector with mean equal to zero that is distributed independently

of the exogenous regressors Xi and the disturbances ui.
14 Using these assumptions and

stacking observations for all N �rms yields,

h = X� + Z� + u; (13)

where Z = diag[Xi]i=1;:::;N is a block-diagonal matrix with the matrixXi on its i-th diagonal

element, � = (�01; : : : ; �
0

N )
0 is an unknown vector of random e�ects that capture parameter

heterogeneity across �rms, and u is an unknown random error vector. The foregoing as-

sumptions imply that

E

"
�

u

#
=

"
0

0

#
; and Var

"
�

u

#
=

"
G 0

0 R

#
; (14)

where G = �� 
 IN , the symbol 
 denotes the Kronecker product, and IN is the identity

matrix of dimension N .15

Consistent and e�cient estimates of the unknown parameter vectors � and � in equation

13 can be obtained via Generalized Least Squares (GLS). Formally, the GLS estimators of

� and �, denoted by �̂ and �̂, respectively, are obtained by minimizing

(h�X�)0V �1(h�X�); (15)

with respect to �, where V = ZGZ 0+R is the covariance matrix of h. Minimizing equation

15, of course, requires the knowledge of V and, therefore, the knowledge of G and R. Given

reasonable estimates of G and R, which are denoted bG and bR, respectively, we can obtain

the feasible GLS (FGLS) estimates of the parameter vectors � and �, given by

�̂ =
�
X 0 bV �1X

�
�

X 0 bV �1h; (16)

�̂ = bGZ 0 bV �1"̂; (17)

where "̂ = h �X�̂ and � denotes the generalized inverse. Using equations 16 and 17, our

estimate of the ex post inventory deviation index e is then given by,

ê = �(h�X�̂ � Z�̂): (18)

Because of the unbalanced nature of out data, we use the Minimum Variance Quadratic

14This independence assumption seems reasonable, because any suspected systematic dependence can, in
principle, be explicitly modeled and hence accounted for.

15Note that in equation 14, we let the covariance matrix �� be unrestricted. Hence, we allow for the
possibility that the elements of the random vector �i may be correlated.
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Unbiased Estimators (MIVQUE) of G and R to compute �̂ and �̂. Developed by Rao (1971),

the non-iterative MIVQUE of variance components are an alternative to the computationally

intensive ML estimators. The procedure requires no distributional assumptions other than

the existence of the �rst four moments. Basically, the MIVQUE of a linear combination of

the unknown variance components in G and R are obtained by �nding a symmetric matrix

W , such that Var[h0Wh] is minimized subject to the conditions that h0Wh is an unbiased

estimator of the linear combination of the variance components and is invariant to any

translation of the � parameter.16

To simplify computations, we also assume that Var[uit] = �2i = �2e for all i. Hence,

R = �2eIn, where n =
PN

i=1 Ti is the total sample size of our unbalanced panel. Because this

homoscedastic assumption is likely to be violated in practice, we compute the covariance

matrix of the parameter vector �̂ using the asymptotically consistent estimator described

by Diggle, Liang, and Zeger (1995). This estimator is computed as follows:

Var[�̂] =
�
X 0 bV �1X

�
�

"
NX
i=1

X 0

i
bV �1
i "̂i"̂

0

i
bV �1
i Xi

# �
X 0 bV �1X

�
�

; (19)

where matrices with the subscript i correspond to those of the i-th �rm.

Table 1 contains the FGLS estimates of the structural parameters 
 and � from equation

10 for the major industry groups in our sample. Note that across all industries, estimates of

the both parameters are of the right sign: 
 > 0 and � < 0. Almost uniformly, the estimates

are statistically signi�cant. Only for SIC 270 (Printing & Publishing) is the estimate of �

not statistically di�erent from zero at the usual signi�cance level, although it is of the

right sign. In addition, there is considerable variation in the estimates of 
 and � across

industries. Estimates of 
 range from the low of 0.435 for SIC 320 (Stone, Clay & Glass

Products) to the high of 0.925 for SIC 250 (Furniture & Fixtures), while estimates of �

range from -1.258 for SIC 340 (Fabricated Metal Products) to -0.225 for SIC 270 (Printing

& Publishing).

Using the parameter estimates from Table 1, we then can calculate the time path of

optimal inventories for each �rm. Figure 1 presents the cross-sectional average of the ratio

of optimal inventories to real quarterly sales for the nondurable and durable goods sectors

16As discussed by Baltagi (1995), the MIVQUE require a priori values of the variance components in G and
R. Consequently, the resulting estimators are minimum variance only if these a priori values coincide with
the true values. Two priors for the matrix W are typically used in practice: the identity matrix, denoted
by MIVQUE(0), and the method of moments (ANOVA) estimators denoted by MIVQUE(A). We use the
MIVQUE(0) estimators of G and R to obtain the FGLS estimators �̂ and �̂ in equations 16 and 17. Note
that if one iterates on the initial values of the variance components until convergence, the MIVQUE will
converge to ML estimates under normality; see Swallow and Monahan (1984) and Baltagi and Chang (1994)
for a detailed discussion and relative e�ciency comparisons of the various variance components estimators
with unbalanced panel design.
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over our sample period. For the most part, the behavior of this average ratio is quite

similar to that of the sectoral inventory-sales ratios computed from the published aggregate

data. The average optimal inventory-sales ratio in the durable goods sector declines fairly

steadily throughout our sample period, a pattern very similar to that in the aggregate

data. (The correlation between the two series is almost 0.9.) In contrast, after a decline

in the early 1980s, the average ratio in the nondurable goods sector has been relatively

constant. Similarly, the aggregate inventory-sales ratio in the nondurable goods sector has

been relatively constant throughout our sample period; the correlation between the two

series in this sector is about 0.4 after 1983.17

The steady decline in the optimal inventory-sales ratio for the durable goods �rms

suggest one way that the recent improvements in inventory control may have a�ected �rm-

level inventory behavior. The wide-spread adoption of these innovations during the 1980s

presumably has enabled �rms to control and monitor their inventories better than they had

previously. If so, �rms then face a smaller probability of encountering a stockout for a given

inventory level and thus would want to carry fewer inventories relative to their sales. If

these practices became su�ciently widespread throughout the sector, we would observe a

decline in the average optimal inventory-sales ratio.18

5 Results

In this section, we present our main results. We characterize the main elements of equation

3, namely, the inventory adjustment function �(z; t) and the cross-sectional distribution of

inventory deviations, f(z; t). Of particular interest are the shape of the inventory adjust-

ment function and its variation across sectors and time. In addition, we examine the time

path of the cross-sectional distribution of the inventory deviation index z.

5.1 Microeconomic Inventory Adjustment

To compute the inventory adjustment function �(z; t), we �rst discretize the state space.

The inventory deviation index z takes values between -0.4 and 0.4, over an equally-spaced

grid with intervals of size 0.01. (This interval covers over 99 percent of the sample range

17The aggregate inventory-sales ratio in the nondurable goods sector does not exhibit the pronounced
decline in the early 1980s that is evident in the micro data; hence, the correlation over the entire sample
period is only 0.1. However, this weak correspondence between the micro and aggregate data is a result of
Standard & Poor's relatively limited coverage of nondurable goods �rms early in the sample. In the mid
1980s, Standard & Poor's greatly expanded its coverage, especially among smaller nondurable goods �rms,
and the aggregates computed from the micro data are much more closely correlated with the aggregate time
series.

18Abernathy et al. (1999) contains a detailed case study of the apparel and textile industry, where even in
the face of product proliferation, lean retailing practices have been propagated through to the manufacturers.
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of z.) In each interval, we construct the value of the adjustment function by dividing the

average inventory growth by z for those �rms that are at z just before inventory adjustments

take place.19 In what follows, all depicted adjustment functions are smoothed by a cubic

B-spline.

5.1.1 Manufacturing Inventory Adjustment

The solid line in Figure 2 shows the estimated inventory adjustment function for the U.S.

manufacturing sector. The two dotted lines represent two standard deviation error bands.20

The dashed line represents the smoothed density function of inventory deviations across all

�rms and quarters.

Three observations about Figure 2 stand out. First, the adjustment function in non-

linear: �rms adjust inventories more as the magnitude of the deviation increases. This

nonlinearity is irrespective of whether the deviation is an inventory shortage (z > 0) or an

inventory overhang (z < 0). The di�erence between the adjustment rates for �rms with

large and small deviation is on the order of 15 percent and appears to be signi�cant. The

shape of the estimated adjustment function is consistent with the existence of nonconvexities

in the production technology that induce �rms to adopt (S; s){type inventory policies.

Second, the inventory adjustment function is asymmetric. For small- to moderate-sized

inventory deviations, �rms with inventories above their desired level (z < 0) adjust less than

�rms with similar-sized inventory shortages (z > 0). There are several possible explanations

for this asymmetry. First, because of a strong stockout avoidance motive, �rms may be more

willing to carry extra inventories. Second, market irreversibilities could prevent �rms from

reducing their excess inventories. Third, �rms may be reluctant to cut output, because they

�nd it costly not to employ their capital and labor.

The �nal point about Figure 2 concerns the level of the estimated adjustment rates. In

contrast to the implied adjustment rate estimated from a canonical L-Q model, the adjust-

ment rates in Figure 2 are economically plausible. According to Ramey and West (1999),

typical estimates of the adjustment rate from the L-Q model on quarterly U.S. manufac-

19In calculating the values of the adjustment function, values of z close to zero|that is, between -0.02
and 0.02|are excluded, because the calculation involves dividing the average adjustment rate by z.
Because of the unbalanced nature of our panel and the varying degree of precision regarding our key

parameter estimates, the average adjustment rate in each z-interval is computed as a weighted average of
inventory growth rates, where the weights are given by the reciprocal of the �rm-speci�c standard deviation
of the estimated post-adjustment inventory deviation index êit. All the results, however, are nearly identical
if an unweighted average is used in computations.

20The error bands are obtained via a nonparametric bootstrap method. Speci�cally, from the original
sample, we draw with replacement the estimated inventory deviations and the actual inventory adjustments
(i.e., inventory growth rates). For each of the 5,000 bootstrap samples, we compute the adjustment function
as described in the text. We then compute the standard deviation of the estimated average adjustment for
each point in our z-space. Finally, the resulting �2 standard deviation error bands are smoothed using the
same procedure as in the case of the adjustment function.
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turing data are in the 10-20 percent range, indicating large costs of adjusting production.

In our model, the estimated adjustment rates vary between 60 and 80 percent per quarter,

an economically plausible range given the relative size of inventories to quarterly sales for

the �rms in our sample.

5.1.2 Sectoral Inventory Adjustment

In this section, we investigate whether the inventory adjustment function di�ers between

the durable and nondurable goods sectors. Sectoral di�erences in the inventory adjustment

process may provide some insight into the nature of the nonlinearities present in the overall

inventory adjustment function.

Apparent from Figure 3 is that the inventory adjustment functions for durable and

nondurable goods �rms exhibit a similar shape. In both sectors, the adjustment functions

contain nonlinearities associated with generalized (S; s){type inventory policies. However,

there are some noticeable di�erences between the two sector-speci�c adjustment functions.

First, most obviously, the adjustment rate for nondurable goods �rms is greater than that

for durable goods �rms for all values of the inventory deviation index z (the di�erence ranges

from 5 to 10 percent). This di�erence may re
ect that nondurable goods manufacturers

are more willing or better able to close inventory deviations, possibly owing to di�ering

production technologies or market structures.

Second, the adjustment function for durable goods �rms displays a greater asymmetry

than the adjustment function for nondurable goods �rms. This di�erence suggests that

the issues of stockout avoidance and market or production irreversibilities may be more

important for inventory behavior of durable goods �rms than for their counterparts in the

nondurable goods sector. Moreover, the combination of lower inventory adjustment rates

and greater asymmetries in the durable goods sector indicates that nonconvexities in the

production technology may be more prevalent in durable goods industries.21

5.1.3 Time Variation in Inventory Adjustment

In this section, we examine the variation of the inventory adjustment function across time.

First, we compare the adjustment functions during expansions and recessions to investigate

how the adjustment process may di�er over the business cycle. We then compare the

adjustment functions estimated over the 1980s and the 1990s to examine the extent to

which technological improvements in inventory control during our sample period may have

a�ected the inventory adjustment process.

21There is persuasive evidence that nonconvex production costs play an important role in the automobile
industry; see Bresnahan and Ramey (1994) and Hall (1999).
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Cyclical Shifts in the Adjustment Function The inventory adjustment functions for

NBER-dated expansions and recessions during our sample period are displayed in Figure 4.

The implied pattern of inventory investment underlying these functions is in accord with

the stylized facts regarding the role of inventories in aggregate 
uctuations. Most notably,

the adjustment rate for small to moderate inventory overhangs (z < 0) during recessions

is above the adjustment rate for inventory overhangs of similar size during expansions.

Thus, for a given level of excess inventories, �rms reduce their inventory holdings more in

recessions than they do during normal economic times.

Furthermore, compared to a period of normal economic activity, target inventories are

likely to be revised down in recessions. This macroeconomic state dependence could be

a result of increased demand uncertainty or adverse cost or productivity shocks during

periods of economic downturn. Consequently in recessions, a greater fraction of �rms may

�nd themselves holding excess inventories. The interaction between the adjustment function

and the cross-sectional distribution of inventory deviations at the onset of a recession would

lead to a period of rapid aggregate inventory disinvestment.

Long-Term Shifts in the Adjustment Function Next, we examine the stability of

the inventory adjustment function across di�erent subperiods of our sample. This exercise

enables us to investigate the potential e�ect of technological improvements and innovations

in inventory management practices on the inventory adjustment process.

Figure 1 of Section 4.2 shows that the estimated optimal inventory-sales ratio in durable

goods industries has declined signi�cantly during our sample period. We argued that this

steady decline is consistent with the adoption of more e�cient inventory control methods.

In addition to this e�ect, the impact of inventory control innovations on the adjustment

process is equally important in assessing the implications of these innovations for aggregate

inventory cycles. Suppose that following the adoption of modern inventory management

practices, adjustment rates have increased signi�cantly and the adjustment function has

become closer to a constant function. Such pattern would imply that the costs of adjusting

inventories have declined and that nonconvexities in the cost structure have a lesser e�ect

on �rm behavior, resulting in reduced volatility of inventory investment.

Given that our data cover nearly two full decades, we compare the inventory adjust-

ment function estimated over the 1980s with that estimated over the 1990s. In light of the

above-documented cyclical shifts in the inventory adjustment process, we exclude recession

quarters when we estimate the decade-speci�c adjustment functions. By doing so, we elim-

inate any di�erences in the inventory adjustment process that would result from business

cycle-dependent shifts in the adjustment function.

The inventory adjustment functions estimated over the 1980s and 1990s are plotted
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in Figure 5.22 The two functions are similar, as they both display the same nonlinear,

asymmetric shape as the adjustment function estimated over the entire sample period.

Nevertheless, the adjustment rates are uniformly higher during the 1990s than during the

1980s, with the largest di�erences occurring for inventory shortages (z > 0). Note also that

relative to the 1980s, the adjustment function during the 1990s displays somewhat greater

asymmetry between inventory investment and disinvestment.

The fact that adjustment rates are somewhat higher in the 1990s than in the 1980s is

consistent with the presumed e�ects of improved inventory control on the inventory adjust-

ment process. However, the shape of the adjustment function in the 1990s is also consistent

with the continuing presence of nonconvexities and asymmetries in the inventory adjustment

process. Combined with the relatively small increase in the rate of adjustment, this suggests

that advances in inventory control methods have had little e�ect on the adjustment cost

structure over the past two decades. On the other hand, these improvements have likely

had an e�ect of lowering the optimal inventory holdings, particularly in the durable goods

sector.

The implications of these results for aggregate inventory 
uctuations are unclear. On the

one hand, the recent advances in inventory control practices have done much to improve a

�rm's ability to continuously and accurately monitor their inventory levels, thus reducing the

possibility of a \surprise" shortage. This better information, in turn, reduces the perceived

probability and the expected costs of a stockout, thereby reducing the need to carry as

much inventory relative to sales as before.

On the other hand, the production technology is likely to be una�ected by such inventory

control innovations, and the adjustment process given the desired inventory level will remain

stable over time. The decline in the optimal inventory-sales ratio implies that inventories

will be lower than they would be otherwise. However, with little change apparent in the

adjustment technology, it is likely that the 
uctuations about the lower inventory targets

may be of a similar magnitude as before, depending, ultimately, upon the distribution of

inventory deviations and exogenous shocks.

5.2 Cross-Sectional Evolution of Inventory Deviations and Shocks

The cross-sectional distribution of inventory deviations, f(z; t), is determined by the in-

teraction between the aggregate and idiosyncratic shocks a�ecting �rms' inventory targets

and the inventory adjustment process. The average density|where the average is com-

puted over all �rm/quarter observations|is displayed by the dashed line in Figure 2. In

22We also estimated the decade-speci�c adjustment functions for the durable and nondurable goods sectors
separately. Other than increasing noise in the data, controlling for sectoral di�erences has little substantive
e�ect on our results.
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this section, we consider the time variation of this distribution and the evolution of the

shocks a�ecting inventory deviations.

5.2.1 Cross-Sectional Moments of Inventory Deviations

Figure 6 displays the time paths of the cross-sectional (weighted) mean of inventory de-

viations and aggregate inventory growth for the durable and nondurable goods sectors.23

In both sectors, the cross-sectional mean of the inventory deviation index z and aggregate

inventory growth move closely together; the correlation between the two series is 0.77 in

the durable goods sector and 0.61 in the nondurable goods sector. The high correlation be-

tween the two series indicates that our estimates of the inventory deviations are successful

in capturing the basic features of aggregate inventory investment.

Nevertheless, the correlation is far from perfect, and there are episodes|in particular,

the period surrounding the economic slowdown during the 1980s|when the behavior of

the two series di�ers markedly. This suggests that aspects other than the mean of the

cross-sectional distribution of inventory deviations may a�ect aggregate inventory dynam-

ics. Moreover, the use of representative agent assumption in modeling aggregate inventory

investment is unlikely to capture these missing features.

The time paths of the (weighted) second, third, and fourth moments of the cross-

sectional distribution are presented in Figure 7.24 Each moment displays signi�cant tem-

poral variation and does not appear to be highly correlated with the other moments. Over

time, the cross-sectional distribution of inventory deviations exhibits both substantial skew-

ness and kurtosis; interestingly, these higher moments are more volatile in nondurable goods

industries. The time variation of these higher moments and the imperfect correlation be-

tween the mean of the cross-sectional distribution f(z; t) and aggregate inventory growth

together imply that idiosyncratic shocks have an important e�ect on aggregate dynamics,

an issue we examine further in the next section.

Finally, note that the dispersion of inventory deviations, as measured by the cross-

sectional standard deviation, does not exhibit a secular decline in either sector during our

sample period. A common conjecture concerning recent improvements in inventory control

methods is that they make it easier for �rms to align inventories more closely to their optimal

levels. Thus, if advances in inventory management techniques had a signi�cant impact on

the adjustment process, we should, on average, observe a decline in the cross-sectional

dispersion of inventory deviations. The fact that this decline has not occurred is consistent

with the stability of the adjustment function over our sample period and indicates that

23The means and all other moments are weighted by last period's �rm size, measured by the level of
inventory stocks and have been seasonally adjusted with quarterly dummies.

24Excess kurtosis is de�ned as the di�erence between 3, the kurtosis of the normal distribution, and the
sample kurtosis.
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inventory control innovations have had little e�ect on the inventory adjustment process.

5.2.2 Aggregate and Idiosyncratic Shocks

In this section, we examine the evolution of the aggregate and idiosyncratic shocks. Both

the time path of aggregate shocks and the time path of the cross-sectional distribution of

idiosyncratic shocks are computed from equation 2, using our estimates of the inventory

deviation index. The time path of estimated aggregate shocks is computed according to

�̂t =
1

Nt

NtX
i=1

(�ẑit +�hit�1);

where Nt denotes the number of �rms in period t. In each period t, the estimated cross-

sectional distribution of idiosyncratic shocks corresponds to the histogram of estimated �it's,

where

�̂it = (�ẑit +�hit�1)� �̂t:

We turn �rst to aggregate shocks. The two panels of Figure 8 show the growth rate of

aggregate inventories and the estimated time series of aggregate shocks for the durable and

nondurable goods sectors. The aggregate shocks in both sectors are positively correlated

with the sector-speci�c aggregate inventory growth rate; the correlation between the two

series is 0.66 for the durable goods industries and 0.42 for the nondurable goods industries.

Note that aggregate inventory investment in both sectors was subject to a sequence of large

negative aggregate shocks during the recessions of the 1980s, indicating that aggregate

shocks are a major factor behind economy-wide inventory 
uctuations. Nevertheless, the

correlation is far from perfect, suggesting that idiosyncratic shocks have a signi�cant e�ect

on aggregate inventory movements.

The two panels in Figure 9 show the time path of the standard deviation and skewness

of the cross-sectional distribution of idiosyncratic shocks. (Recall that, by de�nition, the

cross-sectional mean of idiosyncratic shocks is zero for all t.) In both the durable and non-

durable goods sectors, the idiosyncratic shocks exhibit substantial dispersion and skewness;

moreover, both moments display considerable temporal variation. In particular, note that

the skewness coe�cient in both sectors was relatively large and negative during the eco-

nomic turmoil of the late 1970s and early 1980s. This evidence indicates that the impact of

the negative aggregate shocks on inventory investment during this period was augmented by

a greater than average number of negative idiosyncratic shocks, a pattern consistent with

the particularly acute inventory disinvestment during the 1981-82 recession; see Kashyap,

Lamont, and Stein (1994) for a case study of the 1981-82 recession.
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6 Conclusion

In this paper, we have examined inventory adjustment in the U.S. manufacturing sector,

using a long panel of high-frequency �rm-level data. Our theoretical framework is based

on the generalized (S; s) methodology developed by Caballero, Engel, and Haltiwanger.

The major advantage of our approach is that we are able to model explicitly the underlying

microeconomic heterogeneity in the inventory adjustment process, while allowing for general

nonconvexities in the production technology.

A key result of our paper is that the estimated inventory adjustment function is non-

linear and asymmetric. The nonlinearity of the adjustment function is re
ected in the fact

that �rms with larger absolute deviations from optimal inventory levels adjust proportion-

ally more than do �rms with smaller deviations. This �nding implies �rm-level inventory

adjustment consistent with the use of generalized (S; s){type inventory policies, owing to

the presence of nonconvexities in the production technology.

The asymmetric shape of the inventory adjustment function implies that �rms with

small to moderately sized inventory overhangs adjust less than do �rms with similarly

sized inventory shortages. This asymmetry could re
ect an additional stockout avoidance

motive not captured by our model. Alternatively, the asymmetry, which is particularly

pronounced in the durable goods sector, could be indicative of technological and/or market

irreversibilities in the inventory adjustment process.

The inventory adjustment process appears to di�er signi�cantly between recessions and

expansions. The cyclical shifts in the estimated inventory adjustment function indicate that

�rms with excess inventories disinvest more during recessions than they do during expan-

sions. Such macroeconomic state-dependence in (S; s) inventory policies would be consistent

with reductions in the inventory target levels, owing to increased demand uncertainty or

adverse cost shocks.

Outside of such cyclical shifts, the inventory adjustment process appears to have been

relatively stable during our sample period. The estimated adjustment function during

the 1980s is very similar to the adjustment function during the 1990s. In contrast, the

average optimal inventory-sales ratio has declined signi�cantly during our sample period,

particularly in the durable goods sector. These results suggest that despite lower inventory

target levels, the adoption of better inventory control methods have had little e�ect on the

adjustment process.

Our conjecture is that recent inventory control innovations have a�ected relative stock-

out costs but not the adjustment cost structure. However, additional research into the ef-

fects of inventory control innovations on both margins of �rm inventory behavior is needed

to resolve this dichotomy more fully. Such research may also provide more information
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concerning the implications of such innovations for future aggregate inventory, and thus

business cycle, 
uctuations.
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Table 1

FGLS Estimates of the Random Coe�cients Model

Parameter
Industry 
 � �2e W�S

a W�C
b Wtime

c Wqtr
d !e Obs:

SIC 200 0.788 -0.699 0.023 0.01 0.01 0.14 0.01 0.78 4,769
(0.065) (0.104)

SIC 220 0.768 -0.914 0.023 0.01 0.01 0.27 0.02 0.81 2,209
(0.068) (0.095)

SIC 230 0.819 -1.037 0.016 0.01 0.01 0.13 0.03 0.77 1,782
(0.097) (0.127)

SIC 250 0.925 -1.242 0.024 0.01 0.01 0.06 0.01 0.81 1,807
(0.093) (0.182)

SIC 260 0.772 -0.468 0.020 0.01 0.02 0.56 0.01 0.78 2,666
(0.086) (0.154)

SIC 270 0.868 -0.225 0.041 0.02 0.06 0.12 0.04 0.77 3,160
(0.142) (0.176)

SIC 280 0.866 -0.398 0.020 0.01 0.01 0.29 0.13 0.79 5,629
(0.055) (0.080)

SIC 283 0.730 -0.349 0.042 0.01 0.01 0.26 0.25 0.82 3,004
(0.049) (0.077)

SIC 290 0.604 -0.506 0.038 0.01 0.10 0.10 0.01 0.79 1,837
(0.085) (0.179)

SIC 300 0.775 -0.887 0.031 0.01 0.01 0.03 0.19 0.79 2,797
(0.077) (0.125)

SIC 320 0.435 -0.835 0.018 0.18 0.01 0.02 0.01 0.84 1,411
(0.099) (0.195)

Notes: Estimation period: 1979:Q1{1997:Q4. Dependent variable is the log-level of real end of period
t inventories hit. All industry-speci�c regressions include quarterly seasonal e�ects, linear and quadratic
time trends (individual parameter estimates not reported) and are estimated with FGLS, using MIVQUE(0)
(Minimum Variance Quadratic Unbiased Estimator) of the covariance matrix V . Heteroscedasticity-
consistent asymptotic standard errors are reported in parenthesis.

aProbability value for the Wald test of the null hypothesis that the coe�cients on �sit; : : : ;�sit�3 are
jointly equal to zero.

bProbability value for the Wald test of the null hypothesis that the coe�cients on �cit; : : : ;�cit�3 are
jointly equal to zero.

cProbability value for the Wald test of the null hypothesis that the linear and quadratic time trends
are jointly equal to zero.

dProbability value for the Wald test of the null hypothesis that the quarterly seasonal e�ects are jointly
equal to zero.

eA measure of panel unbalancedness given by Ahrens and Pincus (1981): ! = N=T
P

( 1

Ti
), where

T =
P

Ti=N . Note that 0 � ! � 1, with ! = 1 when the panel is balanced.
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Table 1 (continued)

FGLS Estimates of the Random Coe�cients Model

Parameter
Industry 
 � �2e W�S

a W�C
b Wtime

c Wqtr
d !e Obs:

SIC 330 0.605 -0.803 0.026 0.01 0.01 0.29 0.01 0.76 3,289
(0.081) (0.130)

SIC 340 0.770 -1.258 0.011 0.01 0.01 0.13 0.59 0.78 4,204
(0.055) (0.121)

SIC 350 0.736 -0.811 0.029 0.01 0.01 0.24 0.01 0.81 7,402
(0.034) (0.075)

SIC 357 0.804 -0.525 0.059 0.01 0.01 0.39 0.01 0.81 4,361
(0.046) (0.076)

SIC 360 0.820 -0.826 0.022 0.01 0.02 0.15 0.01 0.83 4,444
(0.053) (0.076)

SIC 366 0.690 -0.889 0.038 0.02 0.06 0.83 0.09 0.81 3,379
(0.066) (0.123)

SIC 367 0.621 -0.568 0.036 0.01 0.01 0.09 0.58 0.80 4,677
(0.049) (0.089)

SIC 370 0.729 -0.929 0.031 0.01 0.01 0.03 0.01 0.79 4,259
(0.064) (0.133)

SIC 380 0.652 -0.936 0.026 0.01 0.01 0.41 0.17 0.81 1,673
(0.080) (0.116)

SIC 382 0.714 -0.584 0.027 0.01 0.01 0.33 0.60 0.81 4,973
(0.049) (0.072)

SIC 384 0.695 -0.452 0.049 0.01 0.01 0.83 0.15 0.81 3,628
(0.054) (0.081)

SIC 390 0.683 -1.081 0.032 0.01 0.01 0.35 0.02 0.79 3,958
(0.056) (0.106)

Notes: Estimation period: 1979:Q1{1997:Q4. Dependent variable is the log-level of real end of period
t inventories hit. All industry-speci�c regressions include quarterly seasonal e�ects, linear and quadratic
time trends (individual parameter estimates not reported) and are estimated with FGLS, using MIVQUE(0)
(Minimum Variance Quadratic Unbiased Estimator) of the covariance matrix V . Heteroscedasticity-
consistent asymptotic standard errors are reported in parenthesis.

aProbability value for the Wald test of the null hypothesis that the coe�cients on �sit; : : : ;�sit�3 are
jointly equal to zero.

bProbability value for the Wald test of the null hypothesis that the coe�cients on �cit; : : : ;�cit�3 are
jointly equal to zero.

cProbability value for the Wald test of the null hypothesis that the linear and quadratic time trends
are jointly equal to zero.

dProbability value for the Wald test of the null hypothesis that the quarterly seasonal e�ects are jointly
equal to zero.

eA measure of panel unbalancedness given by Ahrens and Pincus (1981): ! = N=T
P

( 1

Ti
), where

T =
P

Ti=N . Note that 0 � ! � 1, with ! = 1 when the panel is balanced.

26



Figure 1: Average Optimal Inventory-Sales Ratio
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Figure 2: Inventory Adjustment Function
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Figure 3: Sector-Speci�c Inventory Adjustment Functions
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Figure 4: Cyclical Shifts in the Adjustment Function
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Figure 5: Decade-Speci�c Inventory Adjustment Functions
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Figure 6: Aggregate Inventory Growth and Inventory Deviation Index
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Figure 7: Cross-Sectional Moments of Inventory Deviations
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Figure 8: Aggregate Inventory Growth and Aggregate Shocks
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Figure 9: Cross-Sectional Moments of Idiosyncratic Shocks
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A Data Appendix

This section describes the selection rules used to construct our �rm-level panel and the
construction of the variables used in the analysis. The data for our paper come from the
quarterly P/S/T, Full Coverage, and Research COMPUSTAT data �les. The �rm-level
COMPUSTAT data are compiled in a �scal-year format. The �scal quarters in the data
are aligned with calendar quarters as follows:

1. If the �rm's �scal year ends in the same month as a calendar quarter, the adjustment is
straightforward, as the �scal quarters are relabeled to correspond to calendar quarters.

2. If the �rm's �scal-year end does not coincide with the end of a calendar quarter,
the data are adjusted so that the majority of the �scal quarter is placed into the
appropriate calendar quarter.

A.1 Selection Rules

We selected all �rms with positive total inventories, positive net sales, positive total assets,
and with at least 20 continuous quarters of data between 1978Q1 and 1997Q4. To avoid
results that are driven by a small number of extreme observations, three criteria were used
to eliminate �rms with substantial outliers or obvious errors:

1. If a �rm's estimate of (real) gross output from the accounting identity Y � S +�H
was negative at any point during a �rm's tenure in the sample, a �rm was eliminated
in its entirety.

2. If a �rm's quarterly growth rate of real inventories was above (below) the 99.5 (0.5)
percentile of the distribution in any period during the �rm's tenure in the panel, the
�rm was eliminated in its entirety.

3. If a �rm's quarterly growth rate of real sales was above (below) the 99.5 (0.5) percentile
of the distribution in any period during the �rm's tenure in the panel, the �rm was
eliminated in its entirety.

As a consequence of these selection rules, 911 �rms were eliminated from the original
panel.25 Table A.1 provides a detailed industry breakdown of our panel. All of our industry
groups contain more than 1,500 �rm/quarter observations. The sparsest industry in our
data set is SIC 290 (Petroleum & Coal Products), which contains only 40 �rms. On the
other hand, SIC 350 (Industrial Machinery & Equipment) contains 189 �rms. Finally, as
mentioned in the text, the panels are unbalanced, with �rms entering and exiting the data
set. The lowest average industry-speci�c tenure in the panel is almost 38 quarters (SIC 357:
Computers & O�ce Equipment), and the highest is almost 51 quarters (SIC 290: Petroleum
& Coal Products).

25Over 3/4 of eliminated �rms were deleted because of the second and third selection criteria. Visual
inspection of the eliminated �rms revealed severe anomalities and likely errors in their reported data.
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A.2 Construction of Variables

� Inventories: The COMPUSTAT data report the book value of total inventories. Be-
cause the �rm-level COMPUSTAT data provide limited and incomplete information
on the inventory accounting practices, we assumed that all inventory stocks are eval-
uated using the FIFO method; namely, once a �nished good is placed on shelves, it is
given a price tag that remains on the item regardless of what subsequently happens
to the price of newly produced goods. This implies that the replacement value of
inventory stocks equals their book value. To convert the reported nominal value of
inventories to real terms, inventory stocks were de
ated by the sector-speci�c (i.e.,
durable and nondurable) implicit (1992=100) inventory de
ator. The inventory stocks
are measured as of the end of the period.

� Net Sales: To construct a real measure of sales, the reported nominal value of sales
was de
ated by the sector-speci�c (i.e., durable and nondurable) implicit (1992=100)
sales de
ator.

� Gross Output: An estimate of a �rm's (real) gross output in period t, Yt, was
obtained from the accounting identity Yt � St+�Ht, where St denotes real �nal sales
in period t, and �Ht denotes real inventory investment in period t.26

� Cost per Unit of Output: A real cost per unit of output was constructed by
converting the nominal Cost of Goods Sold to real terms using the implicit (1992=100)
GDP de
ator. The ratio of real total costs to real gross output is our measure of the
average cost per unit of output.

� All other variables were de
ated by the implicit (1992=100) GDP de
ator.

Table A.2 provides summary statistics for the key variables used in our analysis. Because
all �rms in the sample are publicly traded, most of them are relatively large. The median
�rm size, measured by total assets, is $125 million. The distributions of most variables
display considerable skewness|the means of inventories, sales, (gross) output, and assets
are much greater than the medians. The distribution of the inventory-sales ratio, on the
other hand, is considerably more symmetric. Also note that even after excluding outliers
there remains a great deal of heterogeneity in inventory investment and in the growth of
inventories and sales.

26Note that the accounting identity, Y � S +�H, holds only for �nished goods inventories. Because the
quarterly COMPUSTAT data report only the dollar value of total inventory stocks, this relationship does
not hold exactly in our data. Nevertheless, the results reported in this paper are virtually identical when
we include �rms that violate this \accounting identity."
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Table A.1

Industry Composition

Industry Classi�cation # of Firms Avg: Ti Med: Ti Obs.

SIC 200: Food & Kindred Prod.a 127 42.6 38.0 5,404
SIC 220: Textile Mill Prod. 67 38.0 30.0 2,544
SIC 230: Apparel & Other Prod. 52 39.3 30.0 2,042
SIC 250: Furniture & Fixtures 48 42.7 44.0 2,047
SIC 260: Paper & Allied Prod. 62 48.0 44.5 2,976
SIC 270: Printing & Publishing 75 47.1 40.0 3,535
SIC 280: Chemical & Allied Prod.b 128 49.0 46.0 6,269
SIC 283: Drugs 81 42.1 36.0 3,409
SIC 290: Petroleum & Coal Prod. 40 50.9 43.5 2,037
SIC 300: Rubber & Misc. Plastic Prod. 81 39.5 34.0 3,202
SIC 320: Stone, Clay & Glass Prod. 43 37.8 34.0 1,626
SIC 330: Primary Metal Industries 84 44.2 37.5 3,709
SIC 340: Fabricated Metal Prod. 113 42.2 38.0 4,769
SIC 350: Industrial Machinery & Equip.c 189 44.2 39.0 8,347
SIC 357: Computers & O�ce Equip. 134 37.5 34.0 5,031
SIC 360: Electronic & Other Electric Equip.d 121 41.7 39.0 5,049
SIC 366: Communications Equip 95 50.6 37.0 3,854
SIC 367: Electronic Components 125 42.4 38.0 5,302
SIC 370: Transportation Equip. 112 43.0 37.0 4,819
SIC 380: Instruments & Related Prod.e 50 38.5 33.5 1,923
SIC 382: Measuring & Controlling Prod. 131 43.0 39.0 5,628
SIC 384: Medical Instruments 108 38.6 34.5 4,168
SIC 390: Misc. Manufacturing Industriesf 103 43.4 40.0 4,473

aIncludes SIC 21 (Tobacco and Tobacco Products).
bExcludes SIC 283 (Drugs).
cExcludes SIC 357 (Computers and O�ce Equipment).
dExcludes SIC 366 (Communications Equipment) and SIC 367 (Electronic Components).
eExcludes SIC 382 (Measuring and Controlling Products) and SIC 384 (Medical Instruments).
fIncludes SIC 24 (Lumber & Wood Products) and SIC 31 (Leather & Leather Products).
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Table A.2

Summary Statistics for All Industries

Variable Mean Std.Dev. Median Minimum Maximum

Inventories 191.4 661.5 24.5 0.039 12,660.6
Net Sales 403.5 1699.7 39.6 0.012 39,335.0
Gross Outputa 408.0 1,708.9 40.4 0.010 38,280.7
Total Assets 1,588.5 7,955.1 125.0 0.235 259,303.0
Inv. Investment 0.84 58.8 0.09 -2,444.7 3,077.6
Inv/Sales Ratio 0.73 0.46 0.64 0.01 15.4
Average Costb 0.73 0.44 0.72 0.25 49.4

Inv. Growth Rate (%) 1.31 13.3 1.04 -72.1 82.5
Sales Growth Rate (%) 1.49 17.9 1.80 -112.3 114.5

# of Firms 2,169
Observations 92,163

Notes: Sample period: 1978:Q1{1997:Q4. All variables are in millions of 1992 dollars.
aReal gross output in period t, Yt, was estimated from the accounting identity Yt � St +�Ht,

where St denotes (real) �nal sales in period t, and �Ht denotes (real) inventory investment in
period t.

bReal average cost is de�ned as the ratio of (real) cost of goods sold to (real) gross output.
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